Aurora Bernal, Vincent Cuminetti, Marc Serulla, Adrian Florit, Joanna Konieczny, Golnaz Golnarnik, Yimeng Chen, Marc Ferré, Samuel Geiseler, Anders Vik, Randi Olsen, Lorena Arranz
{"title":"Bone marrow sympathetic neuropathy is a hallmark of hematopoietic malignancies and it involves severe ultrastructural damage.","authors":"Aurora Bernal, Vincent Cuminetti, Marc Serulla, Adrian Florit, Joanna Konieczny, Golnaz Golnarnik, Yimeng Chen, Marc Ferré, Samuel Geiseler, Anders Vik, Randi Olsen, Lorena Arranz","doi":"10.1186/s40164-025-00614-x","DOIUrl":null,"url":null,"abstract":"<p><p>The hematopoietic stem cell (HSC) niche in the bone marrow (BM) supports HSC function, fate and numbers [1]. Sympathetic fibres innervate the BM and are components of the hematopoietic stem and progenitor cell (HSPC) niche [2]. Neuropathy of the HSPC niche is present and essential for disease development in experimental models of JAK2<sup>V617F+</sup> myeloproliferative neoplasms (MPN) and MLL-AF9<sup>+</sup> acute myeloid leukemia (AML), and it is present in the BM of human MPN and AML patients [3-6]. Neuropathy contributes to mutant HSC expansion and represents an effective therapeutic target to block disease progression in JAK2<sup>V617F+</sup> MPN mice [3]. The sympathomimetic agonist mirabegron restored nestin<sup>+</sup> cells and reduced reticulin fibrosis in MPN patients [7]. Here, we show that neuropathy of the HSPC niche emerges in two additional experimental models of hematological disease including pre-leukemic myelopoiesis driven by NRAS<sup>G12D</sup> and lymphoma/lymphoblastic leukemia driven by p53 deletion. Neuropathy involves severe ultrastructural damage in NRAS<sup>G12D+</sup> mice and AML patients as shown by electron microscopy. When further reinforced chemically, neuropathy has a profound impact on the experimental NRAS<sup>G12D</sup> mouse model, promoting myeloid bias, reducing HSPC numbers and inducing changes in the stem cell microenvironment that include reduced numbers of mesenchymal stromal cells (MSC) and increased presence of morphologically abnormal blood vessels in BM. Together, BM neuropathy is a prevalent factor in hematopoietic malignancies that involves important degradation of sympathetic fibres and contributes to disease in a different manner depending on the driver mutation. This should be taken in consideration in the clinic, given that chemotherapy induces neuropathy of the HSC niche [8] and it is the most frequent first line treatment for AML, acute lymphoblastic leukemia and MPN patients.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"31"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00614-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hematopoietic stem cell (HSC) niche in the bone marrow (BM) supports HSC function, fate and numbers [1]. Sympathetic fibres innervate the BM and are components of the hematopoietic stem and progenitor cell (HSPC) niche [2]. Neuropathy of the HSPC niche is present and essential for disease development in experimental models of JAK2V617F+ myeloproliferative neoplasms (MPN) and MLL-AF9+ acute myeloid leukemia (AML), and it is present in the BM of human MPN and AML patients [3-6]. Neuropathy contributes to mutant HSC expansion and represents an effective therapeutic target to block disease progression in JAK2V617F+ MPN mice [3]. The sympathomimetic agonist mirabegron restored nestin+ cells and reduced reticulin fibrosis in MPN patients [7]. Here, we show that neuropathy of the HSPC niche emerges in two additional experimental models of hematological disease including pre-leukemic myelopoiesis driven by NRASG12D and lymphoma/lymphoblastic leukemia driven by p53 deletion. Neuropathy involves severe ultrastructural damage in NRASG12D+ mice and AML patients as shown by electron microscopy. When further reinforced chemically, neuropathy has a profound impact on the experimental NRASG12D mouse model, promoting myeloid bias, reducing HSPC numbers and inducing changes in the stem cell microenvironment that include reduced numbers of mesenchymal stromal cells (MSC) and increased presence of morphologically abnormal blood vessels in BM. Together, BM neuropathy is a prevalent factor in hematopoietic malignancies that involves important degradation of sympathetic fibres and contributes to disease in a different manner depending on the driver mutation. This should be taken in consideration in the clinic, given that chemotherapy induces neuropathy of the HSC niche [8] and it is the most frequent first line treatment for AML, acute lymphoblastic leukemia and MPN patients.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.