{"title":"The filopodial myosin DdMyo7 is a slow, calcium regulated motor.","authors":"Casey Eddington, Margaret A Titus","doi":"10.1016/j.jbc.2025.108371","DOIUrl":null,"url":null,"abstract":"<p><p>MyTH4-FERM (MF) myosins are a family of molecular motors with critical roles in the formation and organization of thin membrane protrusions supported by parallel bundles of actin - filopodia, microvilli and stereocilia. The amoeboid MF myosin DdMyo7 is essential for filopodia formation but its mechanism of action is unknown. The motor properties of a forced dimer of the DdMyo7 motor were characterized using an in vitro motility assay to address this question. The DdMyo7 motor associates with two different light chains, the Dictyostelium calmodulins CalA and CalB, whose binding is shown to be sensitive to the presence of calcium. TIRF motility assays of the dimerized DdMyo7 motor reveal that it is a slow, processive motor that moves along actin at ∼ 40 nm/sec, and the activity of the motor is significantly reduced in the presence of Ca<sup>2+</sup>. The speed of DdMyo7 is similar to that of other Myo7 familiy members such as human Myo7A and fly DmMyo7A, but is at least 10-fold slower than the mammalian filopodial MF myosin, Myo10. The results show that evolutionarily distant native filopodial myosins can promote filopodia elongation using motors with distinct properties, revealing diverse mechanisms of myosin-based filopodia formation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108371"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108371","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MyTH4-FERM (MF) myosins are a family of molecular motors with critical roles in the formation and organization of thin membrane protrusions supported by parallel bundles of actin - filopodia, microvilli and stereocilia. The amoeboid MF myosin DdMyo7 is essential for filopodia formation but its mechanism of action is unknown. The motor properties of a forced dimer of the DdMyo7 motor were characterized using an in vitro motility assay to address this question. The DdMyo7 motor associates with two different light chains, the Dictyostelium calmodulins CalA and CalB, whose binding is shown to be sensitive to the presence of calcium. TIRF motility assays of the dimerized DdMyo7 motor reveal that it is a slow, processive motor that moves along actin at ∼ 40 nm/sec, and the activity of the motor is significantly reduced in the presence of Ca2+. The speed of DdMyo7 is similar to that of other Myo7 familiy members such as human Myo7A and fly DmMyo7A, but is at least 10-fold slower than the mammalian filopodial MF myosin, Myo10. The results show that evolutionarily distant native filopodial myosins can promote filopodia elongation using motors with distinct properties, revealing diverse mechanisms of myosin-based filopodia formation.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.