{"title":"The contribution of the Golgi and the endoplasmic reticulum to calcium and pH homeostasis in Toxoplasma gondii.","authors":"Abigail Calixto, Katherine Moen, Silvia Nj Moreno","doi":"10.1016/j.jbc.2025.108372","DOIUrl":null,"url":null,"abstract":"<p><p>The cytosolic Ca<sup>2+</sup> concentration of all cells is highly regulated demanding the coordinated operation of Ca<sup>2+</sup> pumps, channels, exchangers and binding proteins. In the protozoan parasite Toxoplasma gondii calcium homeostasis, essential for signaling, governs critical virulence traits. However, the identity of most molecular players involved in signaling and homeostasis in T. gondii are unknown or poorly characterized. In this work we studied a putative calcium proton exchanger, TgGT1_319550 (TgCAXL1), which belongs to a family of Ca<sup>2+</sup>/proton exchangers that localize to the Golgi apparatus. We localized TgCAXL1 to the Golgi and the endoplasmic reticulum (ER) of T. gondii and validated its role as a Ca<sup>2+</sup>/proton exchanger by yeast complementation. Characterization of a knock-out mutant for TgCAXL1 (Δcaxl) underscored the role of TgCAXL1 in Ca<sup>2+</sup> storage by the ER and acidic stores, most likely the Golgi. Most interestingly, TgCAXL1 function is linked to the Ca<sup>2+</sup> pumping activity of the Sarcoplasmic Reticulum Ca<sup>2+</sup>-ATPase (TgSERCA). TgCAXL1 functions in cytosolic pH regulation and recovery from acidic stress. Our data showed for the first time the role of the Golgi in storing and modulating Ca<sup>2+</sup> signaling in T. gondii and the potential link between pH regulation and TgSERCA activity, which is essential for filling intracellular stores with Ca<sup>2+</sup>.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108372"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108372","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cytosolic Ca2+ concentration of all cells is highly regulated demanding the coordinated operation of Ca2+ pumps, channels, exchangers and binding proteins. In the protozoan parasite Toxoplasma gondii calcium homeostasis, essential for signaling, governs critical virulence traits. However, the identity of most molecular players involved in signaling and homeostasis in T. gondii are unknown or poorly characterized. In this work we studied a putative calcium proton exchanger, TgGT1_319550 (TgCAXL1), which belongs to a family of Ca2+/proton exchangers that localize to the Golgi apparatus. We localized TgCAXL1 to the Golgi and the endoplasmic reticulum (ER) of T. gondii and validated its role as a Ca2+/proton exchanger by yeast complementation. Characterization of a knock-out mutant for TgCAXL1 (Δcaxl) underscored the role of TgCAXL1 in Ca2+ storage by the ER and acidic stores, most likely the Golgi. Most interestingly, TgCAXL1 function is linked to the Ca2+ pumping activity of the Sarcoplasmic Reticulum Ca2+-ATPase (TgSERCA). TgCAXL1 functions in cytosolic pH regulation and recovery from acidic stress. Our data showed for the first time the role of the Golgi in storing and modulating Ca2+ signaling in T. gondii and the potential link between pH regulation and TgSERCA activity, which is essential for filling intracellular stores with Ca2+.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.