Taishi Kasai, Yuhei O Tahara, Makoto Miyata, Daisuke Shiomi
{"title":"Spiroplasma eriocheiris FtsZ assembles the ring-like structure assisted by SepF.","authors":"Taishi Kasai, Yuhei O Tahara, Makoto Miyata, Daisuke Shiomi","doi":"10.1016/j.jbc.2025.108373","DOIUrl":null,"url":null,"abstract":"<p><p>The FtsZ protein is involved in bacterial cell division. In cell-walled bacteria, such as Bacillus subtilis, FtsZ forms a ring-like structure, called the Z ring, at the cell division site and acts as a scaffold for cell wall synthesis. The inhibition of cell wall synthesis in B. subtilis has been shown to interfere with the function of the Z ring, causing a loss in cell division control. Spiroplasma, a cell wall-less bacterium, lacks most of the genes involved in cell division; however, the ftsZ gene remains conserved. The function of Spiroplasma eriocheiris FtsZ (SeFtsZ) remains to be determined. In the present study, we analyzed the biochemical characteristics of SeFtsZ. Purified SeFtsZ demonstrated lower polymerization capacity and GTPase activity than FtsZ from Escherichia coli and B. subtilis. We also investigated the relationship between SeFtsZ and SeSepF, which anchors FtsZ to the cell membrane, and found that SeSepF did not contribute to the stability of FtsZ filaments, unlike the B. subtilis SepF. SeFtsZ and SeSepF were produced in E. coli L-forms, where cell wall synthesis was inhibited. SeFtsZ formed ring-like structures in cell wall-less E. coli cells, suggesting that SeFtsZ forms Z rings and is involved in cell division independently of cell wall synthesis.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108373"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108373","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The FtsZ protein is involved in bacterial cell division. In cell-walled bacteria, such as Bacillus subtilis, FtsZ forms a ring-like structure, called the Z ring, at the cell division site and acts as a scaffold for cell wall synthesis. The inhibition of cell wall synthesis in B. subtilis has been shown to interfere with the function of the Z ring, causing a loss in cell division control. Spiroplasma, a cell wall-less bacterium, lacks most of the genes involved in cell division; however, the ftsZ gene remains conserved. The function of Spiroplasma eriocheiris FtsZ (SeFtsZ) remains to be determined. In the present study, we analyzed the biochemical characteristics of SeFtsZ. Purified SeFtsZ demonstrated lower polymerization capacity and GTPase activity than FtsZ from Escherichia coli and B. subtilis. We also investigated the relationship between SeFtsZ and SeSepF, which anchors FtsZ to the cell membrane, and found that SeSepF did not contribute to the stability of FtsZ filaments, unlike the B. subtilis SepF. SeFtsZ and SeSepF were produced in E. coli L-forms, where cell wall synthesis was inhibited. SeFtsZ formed ring-like structures in cell wall-less E. coli cells, suggesting that SeFtsZ forms Z rings and is involved in cell division independently of cell wall synthesis.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.