{"title":"Prediction of herbal compatibility for colorectal adenoma treatment based on graph neural networks.","authors":"Limei Gu, Yinuo Ma, Shunji Liu, Qinchang Zhang, Qiang Zhang, Ping Ma, Dongfang Huang, Haibo Cheng, Yang Sun, Tingsheng Ling","doi":"10.1186/s13020-025-01082-5","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal adenoma is a common precancerous lesion with a high risk of malignant transformation. Traditional Chinese medicine and its complex prescriptions have shown promising efficacy in the treatment of adenomas; however, there remains a lack of systematic understanding regarding the compatibility patterns within these prescriptions, as well as an effective model for predicting therapeutic outcomes. In this study, we collected numerous TCM prescriptions and their components, recommended by experts for the treatment of colorectal adenoma, and developed a heterogeneous graph neural network model to predict the compatibility strength and probability among the herbs within these prescriptions. This model delineates the complex relationships among herbs, active compounds, and molecular targets, allowing for a quantification of the interactions and compatibility potential among the herbs. Using this model, we identified high-potential therapeutic prescriptions from clinical prescription records and identified their active components through network pharmacology. Through this approach, we aim to provide a theoretical foundation for the clinical TCM treatment of colorectal adenoma, foster the discovery of new prescriptions to optimize the therapeutic efficacy of TCM, and ultimately advance the field of cancer prevention and treatment based on traditional Chinese medicine.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"31"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01082-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal adenoma is a common precancerous lesion with a high risk of malignant transformation. Traditional Chinese medicine and its complex prescriptions have shown promising efficacy in the treatment of adenomas; however, there remains a lack of systematic understanding regarding the compatibility patterns within these prescriptions, as well as an effective model for predicting therapeutic outcomes. In this study, we collected numerous TCM prescriptions and their components, recommended by experts for the treatment of colorectal adenoma, and developed a heterogeneous graph neural network model to predict the compatibility strength and probability among the herbs within these prescriptions. This model delineates the complex relationships among herbs, active compounds, and molecular targets, allowing for a quantification of the interactions and compatibility potential among the herbs. Using this model, we identified high-potential therapeutic prescriptions from clinical prescription records and identified their active components through network pharmacology. Through this approach, we aim to provide a theoretical foundation for the clinical TCM treatment of colorectal adenoma, foster the discovery of new prescriptions to optimize the therapeutic efficacy of TCM, and ultimately advance the field of cancer prevention and treatment based on traditional Chinese medicine.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.