Targeting Caveolin-1 for enhanced rotator cuff repair: findings from single-cell RNA sequencing.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Shanhong Fang, Songye Wu, Peng Chen
{"title":"Targeting Caveolin-1 for enhanced rotator cuff repair: findings from single-cell RNA sequencing.","authors":"Shanhong Fang, Songye Wu, Peng Chen","doi":"10.1038/s41420-025-02359-2","DOIUrl":null,"url":null,"abstract":"<p><p>Rotator cuff injury (RCI), a prevalent cause of shoulder pain and disability, often leads to significant functional impairments due to adipocyte infiltration into the damaged tissue. Caveolin-1 (Cav-1), a critical membrane protein, plays a significant role in adipocyte differentiation and lipid metabolism. This study utilized single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of cell subpopulations in RCI tissues and assess the regulatory effects of Cav-1. The findings revealed that Cav-1 expression negatively correlates with adipogenic activity, and its modulation through exercise or targeted therapies can significantly reduce adipocyte infiltration and enhance tissue repair. Further, Cav-1 knockout and overexpression models demonstrated the protein's impact on key genes involved in adipocyte differentiation and lipid metabolism, such as Scd1, fatty acid synthase (FASN), and peroxisome proliferator-activated receptor gamma (Pparg). Animal studies corroborated these results, showing that exercise intervention increased Cav-1 expression, decreased adipocyte infiltration, and promoted structural repair. These insights suggest that targeting Cav-1 could offer a novel therapeutic strategy for improving RCI outcomes.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"88"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02359-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rotator cuff injury (RCI), a prevalent cause of shoulder pain and disability, often leads to significant functional impairments due to adipocyte infiltration into the damaged tissue. Caveolin-1 (Cav-1), a critical membrane protein, plays a significant role in adipocyte differentiation and lipid metabolism. This study utilized single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of cell subpopulations in RCI tissues and assess the regulatory effects of Cav-1. The findings revealed that Cav-1 expression negatively correlates with adipogenic activity, and its modulation through exercise or targeted therapies can significantly reduce adipocyte infiltration and enhance tissue repair. Further, Cav-1 knockout and overexpression models demonstrated the protein's impact on key genes involved in adipocyte differentiation and lipid metabolism, such as Scd1, fatty acid synthase (FASN), and peroxisome proliferator-activated receptor gamma (Pparg). Animal studies corroborated these results, showing that exercise intervention increased Cav-1 expression, decreased adipocyte infiltration, and promoted structural repair. These insights suggest that targeting Cav-1 could offer a novel therapeutic strategy for improving RCI outcomes.

靶向 Caveolin-1 增强肩袖修复:单细胞 RNA 测序的发现。
肩袖损伤(RCI)是导致肩部疼痛和残疾的常见原因,由于脂肪细胞浸润到受损组织中,通常会导致严重的功能损伤。Caveolin-1 (Cav-1)是一种重要的膜蛋白,在脂肪细胞分化和脂质代谢中起重要作用。本研究利用单细胞RNA测序(scRNA-seq)研究RCI组织中细胞亚群的异质性,并评估Cav-1的调控作用。研究结果表明,Cav-1表达与脂肪生成活性呈负相关,通过运动或靶向治疗调节Cav-1表达可显著减少脂肪细胞浸润,增强组织修复。此外,Cav-1敲除和过表达模型表明,该蛋白对参与脂肪细胞分化和脂质代谢的关键基因(如Scd1、脂肪酸合成酶(FASN)和过氧化物酶体增殖物激活受体γ (Pparg))有影响。动物研究证实了这些结果,表明运动干预增加Cav-1表达,减少脂肪细胞浸润,促进结构修复。这些见解表明,靶向Cav-1可能为改善RCI结果提供一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信