Deletion of Re-citrate synthase allows for analysis of contributions of tricarboxylic acid cycle directionality to the growth of Heliomicrobium modesticaldum.
IF 3.9 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alexandria M Layton, Christopher McCauley, Kevin E Redding
{"title":"Deletion of <i>Re</i>-citrate synthase allows for analysis of contributions of tricarboxylic acid cycle directionality to the growth of <i>Heliomicrobium modesticaldum</i>.","authors":"Alexandria M Layton, Christopher McCauley, Kevin E Redding","doi":"10.1128/aem.01772-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Heliomicrobium modesticaldum,</i> a phototrophic member of the phylum Firmicutes and family Clostridiales, possesses most of the enzymes specific to the reductive tricarboxylic acid (rTCA) cycle, except for the key enzyme, ATP-citrate lyase. It is thought to utilize a split TCA cycle when growing on pyruvate as a carbon source, in which the oxidative TCA (oTCA) direction generates most of the 2-ketoglutarate, but some can be produced in the reductive direction. Although a typical <i>Si</i>-citrate synthase gene is not found in the genome, it was suggested that gene HM1_2993, annotated as homocitrate synthase, actually encodes <i>Re</i>-citrate synthase, which would function as the initial enzyme of the oTCA cycle. We deleted this gene to test this hypothesis and, if true, see what effect severing access to the oTCA cycle would have on this organism. The endogenous CRISPR-Cas system was used to replace the open reading frame with a selectable marker. The deletion mutants could grow on pyruvate but were unable to grow phototrophically on acetate + CO<sub>2</sub> as carbon source. Growth on acetate could be rescued by the addition of different electron sources (formate or ascorbate), suggesting that the oTCA cycle is used to oxidize acetate to generate electrons required to drive the carboxylation of acetyl-CoA. The deletion mutants were capable of growing in acetate minimal media without additional organic supplements beyond formate, demonstrating that the rTCA cycle can be employed to support sufficient 2-ketoglutarate production in this organism, unlike citrate synthase mutants in several chemoheterotrophic organisms utilizing the oTCA cycle.</p><p><strong>Importance: </strong>Heliobacteria are a unique group of phototrophic bacteria that are obligate anaerobes and possess a rudimentary system to use light as a source of energy. They do not make oxygen or fix carbon dioxide. Here, we explore their fundamental carbon metabolism to understand the role and operation of the central TCA cycle. This work shows both the role and operation of this cycle under different growth modes and explains how these organisms can obtain electrons to drive their biosynthetic metabolism. This foundational knowledge will be crucial in the future when attempts are made to use this organism as a platform for oxygen-sensitive synthesis of compounds in an anaerobe that can use light as its energy source.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0177224"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01772-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heliomicrobium modesticaldum, a phototrophic member of the phylum Firmicutes and family Clostridiales, possesses most of the enzymes specific to the reductive tricarboxylic acid (rTCA) cycle, except for the key enzyme, ATP-citrate lyase. It is thought to utilize a split TCA cycle when growing on pyruvate as a carbon source, in which the oxidative TCA (oTCA) direction generates most of the 2-ketoglutarate, but some can be produced in the reductive direction. Although a typical Si-citrate synthase gene is not found in the genome, it was suggested that gene HM1_2993, annotated as homocitrate synthase, actually encodes Re-citrate synthase, which would function as the initial enzyme of the oTCA cycle. We deleted this gene to test this hypothesis and, if true, see what effect severing access to the oTCA cycle would have on this organism. The endogenous CRISPR-Cas system was used to replace the open reading frame with a selectable marker. The deletion mutants could grow on pyruvate but were unable to grow phototrophically on acetate + CO2 as carbon source. Growth on acetate could be rescued by the addition of different electron sources (formate or ascorbate), suggesting that the oTCA cycle is used to oxidize acetate to generate electrons required to drive the carboxylation of acetyl-CoA. The deletion mutants were capable of growing in acetate minimal media without additional organic supplements beyond formate, demonstrating that the rTCA cycle can be employed to support sufficient 2-ketoglutarate production in this organism, unlike citrate synthase mutants in several chemoheterotrophic organisms utilizing the oTCA cycle.
Importance: Heliobacteria are a unique group of phototrophic bacteria that are obligate anaerobes and possess a rudimentary system to use light as a source of energy. They do not make oxygen or fix carbon dioxide. Here, we explore their fundamental carbon metabolism to understand the role and operation of the central TCA cycle. This work shows both the role and operation of this cycle under different growth modes and explains how these organisms can obtain electrons to drive their biosynthetic metabolism. This foundational knowledge will be crucial in the future when attempts are made to use this organism as a platform for oxygen-sensitive synthesis of compounds in an anaerobe that can use light as its energy source.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.