Salsalate negatively impacts microvascular function in women with endometriosis.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Auni C Williams, Virginia G Content, Lacy M Alexander
{"title":"Salsalate negatively impacts microvascular function in women with endometriosis.","authors":"Auni C Williams, Virginia G Content, Lacy M Alexander","doi":"10.1152/ajpheart.00012.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Women with endometriosis, an inflammatory disease, are at increased risk of cardiovascular disease and demonstrate impaired microvascular endothelial function, characterized by reduced nitric oxide (NO)-mediated vasodilation. In some clinical cohorts, nuclear factor-kappa B (NFκB) inhibition with salsalate improves endothelial function. We hypothesized that salsalate would improve cutaneous microvascular endothelial function in women with endometriosis. Following placebo or salsalate (3,000 mg·day<sup>-1</sup> for 5 days), four intradermal microdialysis probes were placed in 11 women (33 ± 7 yr) with endometriosis. Local heating units (set to 33°C) and laser-Doppler flowmetry (red blood cell flux) probes were placed over the probes. Increasing doses of acetylcholine (ACh; dissolved in lactated Ringer's solution) were perfused, alone (control) or coperfused with: <i>N</i><sup>G</sup>-nitro-l-arginine methyl ester (l-NAME), atorvastatin (statin), or l-NAME + statin (combo). Maximal vasodilation was then induced (local heat at 43°C + sodium nitroprusside perfusion). Data were normalized as percentage of maximal cutaneous vascular conductance (CVC<sub>%max</sub> red blood cell flux/mean arterial pressure). To measure macrovascular endothelial function, flow-mediated dilation (FMD) was additionally performed. During placebo, coperfusion with statin did not impact the CVC<sub>%max</sub> ACh dose-response (<i>P</i> = 0.93). Oral salsalate attenuated the CVC<sub>%max</sub> response to ACh perfusion alone (<i>P</i> < 0.01) but did not impact the l-NAME site (<i>P</i> = 0.09). Salsalate significantly augmented the CVC<sub>%max</sub> response of the statin site (<i>P</i> < 0.01) but did not affect the combo site response (<i>P</i> = 1.00). FMD was not different between treatments (<i>P</i> = 0.79). Salsalate treatment impairs vasodilation in the cutaneous microcirculation in women with endometriosis through non-NO-dependent mechanisms.<b>NEW & NOTEWORTHY</b> Our results show that oral salsalate treatment negatively impacts microvascular function but does not alter macrovascular function. In contrast to the majority of other clinical populations with endothelial dysfunction, salsalate treatment reduces microcirculatory function through non-NO-dependent mechanisms in women with endometriosis.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H915-H922"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00012.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Women with endometriosis, an inflammatory disease, are at increased risk of cardiovascular disease and demonstrate impaired microvascular endothelial function, characterized by reduced nitric oxide (NO)-mediated vasodilation. In some clinical cohorts, nuclear factor-kappa B (NFκB) inhibition with salsalate improves endothelial function. We hypothesized that salsalate would improve cutaneous microvascular endothelial function in women with endometriosis. Following placebo or salsalate (3,000 mg·day-1 for 5 days), four intradermal microdialysis probes were placed in 11 women (33 ± 7 yr) with endometriosis. Local heating units (set to 33°C) and laser-Doppler flowmetry (red blood cell flux) probes were placed over the probes. Increasing doses of acetylcholine (ACh; dissolved in lactated Ringer's solution) were perfused, alone (control) or coperfused with: NG-nitro-l-arginine methyl ester (l-NAME), atorvastatin (statin), or l-NAME + statin (combo). Maximal vasodilation was then induced (local heat at 43°C + sodium nitroprusside perfusion). Data were normalized as percentage of maximal cutaneous vascular conductance (CVC%max red blood cell flux/mean arterial pressure). To measure macrovascular endothelial function, flow-mediated dilation (FMD) was additionally performed. During placebo, coperfusion with statin did not impact the CVC%max ACh dose-response (P = 0.93). Oral salsalate attenuated the CVC%max response to ACh perfusion alone (P < 0.01) but did not impact the l-NAME site (P = 0.09). Salsalate significantly augmented the CVC%max response of the statin site (P < 0.01) but did not affect the combo site response (P = 1.00). FMD was not different between treatments (P = 0.79). Salsalate treatment impairs vasodilation in the cutaneous microcirculation in women with endometriosis through non-NO-dependent mechanisms.NEW & NOTEWORTHY Our results show that oral salsalate treatment negatively impacts microvascular function but does not alter macrovascular function. In contrast to the majority of other clinical populations with endothelial dysfunction, salsalate treatment reduces microcirculatory function through non-NO-dependent mechanisms in women with endometriosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信