Phenyl urea based adjuvants for β-lactam antibiotics against methicillin resistant Staphylococcus aureus

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL
Hailey S. Butman , Monica A. Stefaniak , Danica J. Walsh , Vijay S. Gondil , Mikaeel Young , Andrew H. Crow , Ansley M. Nemeth , Roberta J. Melander , Paul M. Dunman , Christian Melander
{"title":"Phenyl urea based adjuvants for β-lactam antibiotics against methicillin resistant Staphylococcus aureus","authors":"Hailey S. Butman ,&nbsp;Monica A. Stefaniak ,&nbsp;Danica J. Walsh ,&nbsp;Vijay S. Gondil ,&nbsp;Mikaeel Young ,&nbsp;Andrew H. Crow ,&nbsp;Ansley M. Nemeth ,&nbsp;Roberta J. Melander ,&nbsp;Paul M. Dunman ,&nbsp;Christian Melander","doi":"10.1016/j.bmcl.2025.130164","DOIUrl":null,"url":null,"abstract":"<div><div>Penicillin binding protein 4 (PBP4) is essential for <em>Staphylococcus aureus</em> cortical bone osteocyte lacuno-canalicular network (OLCN) invasion, which causes osteomyelitis and serves as a bacterial niche for recurring bone infection. Moreover, PBP4 is also a key determinant of <em>S. aureus</em> resistance to fifth-generation cephalosporins (ceftobiprole and ceftaroline). From these perspectives, the development of <em>S. aureus</em> PBP4 inhibitors may represent dual functional therapeutics that prevent osteomyelitis, and reverse PBP4-mediated β-lactam resistance. A high-throughput screen for small molecules that inhibit <em>S. aureus</em> PBP4 function identified compound <strong>1</strong>. We recently described a preliminary structure activity relationship (SAR) study on <strong>1</strong>, identifying several compounds with increased PBP4 inhibitory activity, some of which also inhibit PBP2a. Herein, we expand our exploration of phenyl ureas as antibiotic adjuvants, investigating their activity with penicillins and additional cephalosporins against PBP2a-mediated methicillin-resistant <em>S. aureus</em> (MRSA). We screened the previously reported pilot library, and prepared an additional series of phenyl ureas based on compound <strong>1</strong>. Lead compounds potentiate multiple β-lactam antibiotics, lowering minimum inhibitory concentrations (MICs) below susceptibility breakpoints, with up to 64-fold reductions in MIC.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"121 ","pages":"Article 130164"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X25000733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Penicillin binding protein 4 (PBP4) is essential for Staphylococcus aureus cortical bone osteocyte lacuno-canalicular network (OLCN) invasion, which causes osteomyelitis and serves as a bacterial niche for recurring bone infection. Moreover, PBP4 is also a key determinant of S. aureus resistance to fifth-generation cephalosporins (ceftobiprole and ceftaroline). From these perspectives, the development of S. aureus PBP4 inhibitors may represent dual functional therapeutics that prevent osteomyelitis, and reverse PBP4-mediated β-lactam resistance. A high-throughput screen for small molecules that inhibit S. aureus PBP4 function identified compound 1. We recently described a preliminary structure activity relationship (SAR) study on 1, identifying several compounds with increased PBP4 inhibitory activity, some of which also inhibit PBP2a. Herein, we expand our exploration of phenyl ureas as antibiotic adjuvants, investigating their activity with penicillins and additional cephalosporins against PBP2a-mediated methicillin-resistant S. aureus (MRSA). We screened the previously reported pilot library, and prepared an additional series of phenyl ureas based on compound 1. Lead compounds potentiate multiple β-lactam antibiotics, lowering minimum inhibitory concentrations (MICs) below susceptibility breakpoints, with up to 64-fold reductions in MIC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
3.70%
发文量
463
审稿时长
27 days
期刊介绍: Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信