{"title":"DDX37 and DDX50 Maintain Genome Stability by Preventing Transcription-dependent R-loop Formation","authors":"Yeray Hernández-Reyes , Cintia Fonseca-Rodríguez , Raimundo Freire , Veronique A.J. Smits","doi":"10.1016/j.jmb.2025.169061","DOIUrl":null,"url":null,"abstract":"<div><div>R-loops consist of an RNA-DNA hybrid and a displaced single-stranded DNA strand that play a central role in several biological processes. However, as the presence of aberrant R-loops forms a significant threat to genome stability, R-loop formation and resolution is strictly controlled by RNAse H and helicases. In a screening for RNA helicases, previously described as RNA-DNA hybrid interactors, that control genome integrity, we identified for the first time DDX37 and DDX50. Depletion of DDX37 and DDX50 promotes DNA damage, as demonstrated by H2AX phosphorylation and increased comet tail length. In addition, knock down of these RNA helicases decreases the DNA replication track length and leads to RPA focus formation, results that are indicative of replication stress. Downregulation of DDX37 and DDX50 triggers an increase in RNA-DNA hybrids, that can be reverted by the overexpression of RNase H1. Interestingly, inhibition of transcription prevented the increased RNA-DNA hybrid formation and DNA damage upon DDX37 or DDX50 depletion. Together these results demonstrate that DDX37 and DDX50 are important for resolving RNA-DNA hybrids appearing during transcription and thereby preventing DNA damage by replication stress.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 10","pages":"Article 169061"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625001275","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
R-loops consist of an RNA-DNA hybrid and a displaced single-stranded DNA strand that play a central role in several biological processes. However, as the presence of aberrant R-loops forms a significant threat to genome stability, R-loop formation and resolution is strictly controlled by RNAse H and helicases. In a screening for RNA helicases, previously described as RNA-DNA hybrid interactors, that control genome integrity, we identified for the first time DDX37 and DDX50. Depletion of DDX37 and DDX50 promotes DNA damage, as demonstrated by H2AX phosphorylation and increased comet tail length. In addition, knock down of these RNA helicases decreases the DNA replication track length and leads to RPA focus formation, results that are indicative of replication stress. Downregulation of DDX37 and DDX50 triggers an increase in RNA-DNA hybrids, that can be reverted by the overexpression of RNase H1. Interestingly, inhibition of transcription prevented the increased RNA-DNA hybrid formation and DNA damage upon DDX37 or DDX50 depletion. Together these results demonstrate that DDX37 and DDX50 are important for resolving RNA-DNA hybrids appearing during transcription and thereby preventing DNA damage by replication stress.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.