Development of New Chiral Amino Alcohol Ligand for the Asymmetric Transfer Hydrogenation of Ketones and Its Immobilization Onto Nanomaterials for an Ease of Recovery and Reuse

IF 2.8 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Chirality Pub Date : 2025-03-07 DOI:10.1002/chir.70031
Ludovica Primitivo, Martina De Angelis, Giulia Lucci, Luciano Bonanni, Lorenza Suber, Giuliana Righi, Alessandra Ricelli
{"title":"Development of New Chiral Amino Alcohol Ligand for the Asymmetric Transfer Hydrogenation of Ketones and Its Immobilization Onto Nanomaterials for an Ease of Recovery and Reuse","authors":"Ludovica Primitivo,&nbsp;Martina De Angelis,&nbsp;Giulia Lucci,&nbsp;Luciano Bonanni,&nbsp;Lorenza Suber,&nbsp;Giuliana Righi,&nbsp;Alessandra Ricelli","doi":"10.1002/chir.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study has been carried out to extend the validation of an amino alcohol catalyst in the asymmetric transfer hydrogenation (ATH) of ketones. Previously, the catalyst was tested in asymmetric addition to several aromatic aldehydes with good to excellent results. After having optimized the reaction conditions and tested different amino residues, the best catalyst was tested in ATH of various aromatic ketones, leading to generally high yields (up to &gt; 95%) and moderate to good enantioselectivities (<i>ee</i> 24%–69%). Moreover, considering the lack of examples of recoverable and reusable amino alcohol–based nanostructured catalysts for the ATH, the catalyst of choice was immobilized on proper functionalized superparamagnetic core–shell magnetite–silica nanoparticles and employed in an ATH reaction in semi-homogeneous phase. The obtained nanocatalyst exhibited a moderate catalytic efficiency in the ATH, that remains unchanged in the three catalytic cycles performed, even if noticeably worse than in the homogeneous counterpart.</p>\n </div>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"37 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.70031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study has been carried out to extend the validation of an amino alcohol catalyst in the asymmetric transfer hydrogenation (ATH) of ketones. Previously, the catalyst was tested in asymmetric addition to several aromatic aldehydes with good to excellent results. After having optimized the reaction conditions and tested different amino residues, the best catalyst was tested in ATH of various aromatic ketones, leading to generally high yields (up to > 95%) and moderate to good enantioselectivities (ee 24%–69%). Moreover, considering the lack of examples of recoverable and reusable amino alcohol–based nanostructured catalysts for the ATH, the catalyst of choice was immobilized on proper functionalized superparamagnetic core–shell magnetite–silica nanoparticles and employed in an ATH reaction in semi-homogeneous phase. The obtained nanocatalyst exhibited a moderate catalytic efficiency in the ATH, that remains unchanged in the three catalytic cycles performed, even if noticeably worse than in the homogeneous counterpart.

新型酮类不对称转移加氢手性氨基醇配体的研制及其在纳米材料上的固定化
本研究是为了进一步验证氨基醇催化剂在酮类不对称转移氢化反应中的作用。在此之前,催化剂在几种芳香醛的不对称加成中进行了测试,取得了良好到优异的结果。通过对反应条件的优化和不同氨基残基的测试,对各种芳酮的ATH进行了最佳催化剂测试,得到了较高的收率(可达95%)和中等至良好的对映选择性(ee 24% ~ 69%)。此外,考虑到缺乏可回收和可重复使用的氨基醇基纳米结构ATH催化剂的例子,选择催化剂固定在适当的功能化超顺磁性核-壳磁铁矿-二氧化硅纳米颗粒上,并在半均相中用于ATH反应。所获得的纳米催化剂在ATH中表现出中等的催化效率,在进行的三个催化循环中保持不变,即使明显低于均相对应物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chirality
Chirality 医学-分析化学
CiteScore
4.40
自引率
5.00%
发文量
124
审稿时长
1 months
期刊介绍: The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties. Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信