Inhibition of MALT1 Protease Attenuates Hepatic Sinusoidal Obstruction Syndrome by Modulating NRF2/HO1 and NF-κB Pathway

IF 6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Nidhi Sharma, Yogesh Chandra, Sai Balaji Andugulapati
{"title":"Inhibition of MALT1 Protease Attenuates Hepatic Sinusoidal Obstruction Syndrome by Modulating NRF2/HO1 and NF-κB Pathway","authors":"Nidhi Sharma,&nbsp;Yogesh Chandra,&nbsp;Sai Balaji Andugulapati","doi":"10.1111/liv.70050","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Hepatic sinusoidal obstruction syndrome (HSOS) is a rare liver disorder with potentially life-threatening consequences for colorectal chemotherapy and haematopoietic stem cell transplant recipients. MALT1 (mucous-associated lymphoid tissue lymphoma translocation protein-1) is a protein that plays a key role in the production of inflammatory cytokines, ischemia, atherosclerosis, apoptosis and thromboinflammation; however, its role in HSOS is largely unknown. We aimed to investigate the effect of MALT-1 inhibition in in vitro and in vivo models of HSOS.</p>\n </section>\n \n <section>\n \n <h3> Experimental Approach</h3>\n \n <p>Two mouse models (FOLFOX challenge in immunocompetent and immunocompromised mice) were used to investigate the therapeutic benefits of the MALT-1 inhibitor (MI-2) in vivo. HHSEC, HLEC and RAW-264.7 cells served as in vitro models. HSOS-responsible genes, marker levels and downstream signalling were examined using quantitative real-time PCR, western blot, immunocytochemistry and immunohistochemistry analysis.</p>\n </section>\n \n <section>\n \n <h3> Key Results</h3>\n \n <p>In the current investigation, MI-2 significantly reduced FOLFOX-induced HSOS in both mouse models by inhibiting the occlusion of sinusoids, RBC extravasation and bridging fibrosis in liver sections. MI-2 treatment also dramatically reduced specific SOS markers (vWF, VEGF, ephrin, bilirubin and PECAM) and other inflammatory markers. Mechanistic investigation in in vitro models using macrophages, sinusoidal and endothelial cells demonstrated that MI-2 treatment significantly diminished the inflammatory marker levels/expression by lowering ROS production. In addition to the pharmacological approach, siRNA-mediated MALT1 suppression remarkably reduced chemokine and cytokine marker expression in sinusoidal cells.</p>\n </section>\n \n <section>\n \n <h3> Conclusions and Implications</h3>\n \n <p>Thus, our findings demonstrate that MALT1 suppression dramatically reduces FOLFOX-induced inflammatory and fibrotic conditions by modulating the NF-κB activation, paving the way for innovative HSOS therapy approaches.</p>\n </section>\n </div>","PeriodicalId":18101,"journal":{"name":"Liver International","volume":"45 4","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liver International","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/liv.70050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

Hepatic sinusoidal obstruction syndrome (HSOS) is a rare liver disorder with potentially life-threatening consequences for colorectal chemotherapy and haematopoietic stem cell transplant recipients. MALT1 (mucous-associated lymphoid tissue lymphoma translocation protein-1) is a protein that plays a key role in the production of inflammatory cytokines, ischemia, atherosclerosis, apoptosis and thromboinflammation; however, its role in HSOS is largely unknown. We aimed to investigate the effect of MALT-1 inhibition in in vitro and in vivo models of HSOS.

Experimental Approach

Two mouse models (FOLFOX challenge in immunocompetent and immunocompromised mice) were used to investigate the therapeutic benefits of the MALT-1 inhibitor (MI-2) in vivo. HHSEC, HLEC and RAW-264.7 cells served as in vitro models. HSOS-responsible genes, marker levels and downstream signalling were examined using quantitative real-time PCR, western blot, immunocytochemistry and immunohistochemistry analysis.

Key Results

In the current investigation, MI-2 significantly reduced FOLFOX-induced HSOS in both mouse models by inhibiting the occlusion of sinusoids, RBC extravasation and bridging fibrosis in liver sections. MI-2 treatment also dramatically reduced specific SOS markers (vWF, VEGF, ephrin, bilirubin and PECAM) and other inflammatory markers. Mechanistic investigation in in vitro models using macrophages, sinusoidal and endothelial cells demonstrated that MI-2 treatment significantly diminished the inflammatory marker levels/expression by lowering ROS production. In addition to the pharmacological approach, siRNA-mediated MALT1 suppression remarkably reduced chemokine and cytokine marker expression in sinusoidal cells.

Conclusions and Implications

Thus, our findings demonstrate that MALT1 suppression dramatically reduces FOLFOX-induced inflammatory and fibrotic conditions by modulating the NF-κB activation, paving the way for innovative HSOS therapy approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Liver International
Liver International 医学-胃肠肝病学
CiteScore
13.90
自引率
4.50%
发文量
348
审稿时长
2 months
期刊介绍: Liver International promotes all aspects of the science of hepatology from basic research to applied clinical studies. Providing an international forum for the publication of high-quality original research in hepatology, it is an essential resource for everyone working on normal and abnormal structure and function in the liver and its constituent cells, including clinicians and basic scientists involved in the multi-disciplinary field of hepatology. The journal welcomes articles from all fields of hepatology, which may be published as original articles, brief definitive reports, reviews, mini-reviews, images in hepatology and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信