{"title":"DRD2-Mediated AMPK Ubiquitination Regulates the Occurrence of Hepatic Steatosis","authors":"Peng Ma, Hao Ou, Junze Cai, Yuanli Zhang, Yu Ou","doi":"10.1111/liv.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background & Aims</h3>\n \n <p>G protein-coupled receptors (GPCRs) are important potential drug targets for the treatment of metabolic disorders. The D2 dopamine receptor (DRD2), a GPCR receptor, is a member of the dopamine receptor family. However, the role of DRD2 in regulating lipid metabolism, especially in hepatic steatosis, is unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Eight-week male mice were fed HFHC/MCD to induce the MASH model. AAV2/8 containing the TBG promoter was used to knock down and overexpress DRD2 in mouse liver. Co-immunoprecipitation, Western lotting, immunofluorescence, and immunohistochemistry were used to investigate the mechanisms and screen DRD2 antagonists.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The study found that activation of PKC leads to the elevation and internalisation of DRD2 in a high-fat environment. Knockdown of DRD2 in mouse liver can effectively interfere with the progression of MASH, while overexpression of DRD2 significantly aggravates the process of MASH. The study on the mechanism of DRD2 regulating lipid metabolism found that the internalisation of DRD2 could lead to dephosphorylation of pAKT (T308) by binding to β-arrestin2 and pAKT, thereby inducing ubiquitin-dependent degradation of AMPK and exacerbating steatosis. L-741626, a DRD2 antagonist, was found to interfere with the internalisation of DRD2 in a high-fat environment. It has been shown that L-741626 can treat MASH by regulating the AKT-AMPK signalling axis in vitro and in vivo.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>In conclusion, this study demonstrated that internalisation of DRD2 in a high-fat environment aggravated MASH progression through the AKT-AMPK signalling axis. Furthermore, L-741626, as a DRD2 antagonist, has the potential to treat MASH.</p>\n </section>\n </div>","PeriodicalId":18101,"journal":{"name":"Liver International","volume":"45 4","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liver International","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/liv.70053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims
G protein-coupled receptors (GPCRs) are important potential drug targets for the treatment of metabolic disorders. The D2 dopamine receptor (DRD2), a GPCR receptor, is a member of the dopamine receptor family. However, the role of DRD2 in regulating lipid metabolism, especially in hepatic steatosis, is unclear.
Methods
Eight-week male mice were fed HFHC/MCD to induce the MASH model. AAV2/8 containing the TBG promoter was used to knock down and overexpress DRD2 in mouse liver. Co-immunoprecipitation, Western lotting, immunofluorescence, and immunohistochemistry were used to investigate the mechanisms and screen DRD2 antagonists.
Results
The study found that activation of PKC leads to the elevation and internalisation of DRD2 in a high-fat environment. Knockdown of DRD2 in mouse liver can effectively interfere with the progression of MASH, while overexpression of DRD2 significantly aggravates the process of MASH. The study on the mechanism of DRD2 regulating lipid metabolism found that the internalisation of DRD2 could lead to dephosphorylation of pAKT (T308) by binding to β-arrestin2 and pAKT, thereby inducing ubiquitin-dependent degradation of AMPK and exacerbating steatosis. L-741626, a DRD2 antagonist, was found to interfere with the internalisation of DRD2 in a high-fat environment. It has been shown that L-741626 can treat MASH by regulating the AKT-AMPK signalling axis in vitro and in vivo.
Conclusions
In conclusion, this study demonstrated that internalisation of DRD2 in a high-fat environment aggravated MASH progression through the AKT-AMPK signalling axis. Furthermore, L-741626, as a DRD2 antagonist, has the potential to treat MASH.
期刊介绍:
Liver International promotes all aspects of the science of hepatology from basic research to applied clinical studies. Providing an international forum for the publication of high-quality original research in hepatology, it is an essential resource for everyone working on normal and abnormal structure and function in the liver and its constituent cells, including clinicians and basic scientists involved in the multi-disciplinary field of hepatology. The journal welcomes articles from all fields of hepatology, which may be published as original articles, brief definitive reports, reviews, mini-reviews, images in hepatology and letters to the Editor.