Ensemble Feature Engineering and Deep Learning for Botnet Attacks Detection in the Internet of Things

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
Mir Aman Sheheryar, Sparsh Sharma
{"title":"Ensemble Feature Engineering and Deep Learning for Botnet Attacks Detection in the Internet of Things","authors":"Mir Aman Sheheryar,&nbsp;Sparsh Sharma","doi":"10.1002/ett.70099","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Internet of Things (IoT) has revolutionized how people involve with technological innovations. However, this development has also brought up significant security concerns. The increasing number of IoT attacks poses a serious risk to individuals and businesses equally. In response, this article introduces an ensemble feature engineering method for effective feature selection, based on a systematic behavioral analysis by means of artificial intelligence. This method identifies and highlights the most relevant features from IoT botnet dataset, facilitating accurate detection of both malicious and benign traffic. To detect IoT botnet attacks, the ensemble feature engineering method incorporates distinct approaches, including a genetic algorithm-based genetic approach, filter selection methods such as mutual information, LASSO regularization, and forward-backward search. A merger approach then combines these results, addressing redundancy and irrelevance. As well, a wrapper algorithm called recursive feature removal is applied to further refine the feature selection process. The effectiveness of the selected feature set is validated by means of deep learning algorithms (CNN, RNN, LSTM, and GRU) rooted in artificial intelligence, and applied to the IoT-Botnet 2020 dataset. Results demonstrate encouraging performance, with precision between 97.88% and 98.99%, recall scores between 99.10% and 99.95%, detection accuracy between 98.05% and 99.21%, and an F1-score ranging from 98.45% to 99.82%. Moreover, the ensemble feature engineering approach achieved precision of 98.26%, recall score of 99.68%, detection accuracy of 98.49%, F1-measure of 99.00%, an AUC-ROC of 82.37% and specificity of 98.38%. These outcomes highlight the method's robust performance in identifying both malicious and benign IoT botnet traffic.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) has revolutionized how people involve with technological innovations. However, this development has also brought up significant security concerns. The increasing number of IoT attacks poses a serious risk to individuals and businesses equally. In response, this article introduces an ensemble feature engineering method for effective feature selection, based on a systematic behavioral analysis by means of artificial intelligence. This method identifies and highlights the most relevant features from IoT botnet dataset, facilitating accurate detection of both malicious and benign traffic. To detect IoT botnet attacks, the ensemble feature engineering method incorporates distinct approaches, including a genetic algorithm-based genetic approach, filter selection methods such as mutual information, LASSO regularization, and forward-backward search. A merger approach then combines these results, addressing redundancy and irrelevance. As well, a wrapper algorithm called recursive feature removal is applied to further refine the feature selection process. The effectiveness of the selected feature set is validated by means of deep learning algorithms (CNN, RNN, LSTM, and GRU) rooted in artificial intelligence, and applied to the IoT-Botnet 2020 dataset. Results demonstrate encouraging performance, with precision between 97.88% and 98.99%, recall scores between 99.10% and 99.95%, detection accuracy between 98.05% and 99.21%, and an F1-score ranging from 98.45% to 99.82%. Moreover, the ensemble feature engineering approach achieved precision of 98.26%, recall score of 99.68%, detection accuracy of 98.49%, F1-measure of 99.00%, an AUC-ROC of 82.37% and specificity of 98.38%. These outcomes highlight the method's robust performance in identifying both malicious and benign IoT botnet traffic.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信