Multi-Method Structural Investigation of the Schneiderberg–Baalberge Burial Mound (Saxony-Anhalt, Germany) Including Seismic Full-Waveform Inversion (FWI)
Manuel Zolchow, Daniel Köhn, Dennis Wilken, Ercan Erkul, Stefan Dreibrodt, Natalie Pickartz, Erica Corradini, Johannes Müller, Wolfgang Rabbel
{"title":"Multi-Method Structural Investigation of the Schneiderberg–Baalberge Burial Mound (Saxony-Anhalt, Germany) Including Seismic Full-Waveform Inversion (FWI)","authors":"Manuel Zolchow, Daniel Köhn, Dennis Wilken, Ercan Erkul, Stefan Dreibrodt, Natalie Pickartz, Erica Corradini, Johannes Müller, Wolfgang Rabbel","doi":"10.1002/arp.1961","DOIUrl":null,"url":null,"abstract":"<p>The construction history and subsequent usage of burial mounds are an important testimony for socio-economic transformation in prehistoric societies. The Baalberge–Schneiderberg burial mound, subject of the presented study, falls in this category as it is considered as an important monument that indicates the emergence of early social stratification during the Chalcolithic period in central Europe. This hypothesis relies on the chronological development of the burial mound, which is not fully understood until now. Therefore, a reconstruction of the complex stratigraphy of the burial mound including construction phases and later alterations is highly relevant for archaeological research, but the required excavations would be onerous and inconsistent with preservation efforts. In this paper, we demonstrate that non-invasive geophysical prospection, especially seismic sounding with shear and Love waves, is suitable to obtain the required stratigraphic information, if seismic full waveform inversion (FWI) and reflection imaging are applied. Complementary information on the preservation state of the mound is obtained through Electrical Resistivity Tomography (ERT) and Electromagnetic Induction (EMI) measurements. To support the seismic and geoelectric results, we utilize Dynamic Testing (DynP), geoarchaeological corings, <sup>14</sup>C-Dating and archaeological records. Our investigations reveal two construction phases of the Baalberge–Schneiderberg mound. The <sup>14</sup>C-Dating yields dates for the older burial mound that are contemporary to the Chalcolithic Baalberge group (4000–3400 <span>bc</span>). During the Early Bronze Age (EBA), the mound was enlarged to its final size by people of the Aunjetitz/Únětice society (2300–1600 <span>bc</span>). However, both seismic and geoelectric depth sections show an extensive disturbance of the original stratigraphy due to former excavations. For this reason, the exact shape of the older burial mound cannot be determined exactly. Based on our data, we estimate that its height was below 2 m. In consequence, the original Baalberge burial mound was less monumental as until now assumed, which potentially prompting a revision of its significance as indicator for social differentiation.</p>","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"32 1","pages":"209-234"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1961","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arp.1961","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction history and subsequent usage of burial mounds are an important testimony for socio-economic transformation in prehistoric societies. The Baalberge–Schneiderberg burial mound, subject of the presented study, falls in this category as it is considered as an important monument that indicates the emergence of early social stratification during the Chalcolithic period in central Europe. This hypothesis relies on the chronological development of the burial mound, which is not fully understood until now. Therefore, a reconstruction of the complex stratigraphy of the burial mound including construction phases and later alterations is highly relevant for archaeological research, but the required excavations would be onerous and inconsistent with preservation efforts. In this paper, we demonstrate that non-invasive geophysical prospection, especially seismic sounding with shear and Love waves, is suitable to obtain the required stratigraphic information, if seismic full waveform inversion (FWI) and reflection imaging are applied. Complementary information on the preservation state of the mound is obtained through Electrical Resistivity Tomography (ERT) and Electromagnetic Induction (EMI) measurements. To support the seismic and geoelectric results, we utilize Dynamic Testing (DynP), geoarchaeological corings, 14C-Dating and archaeological records. Our investigations reveal two construction phases of the Baalberge–Schneiderberg mound. The 14C-Dating yields dates for the older burial mound that are contemporary to the Chalcolithic Baalberge group (4000–3400 bc). During the Early Bronze Age (EBA), the mound was enlarged to its final size by people of the Aunjetitz/Únětice society (2300–1600 bc). However, both seismic and geoelectric depth sections show an extensive disturbance of the original stratigraphy due to former excavations. For this reason, the exact shape of the older burial mound cannot be determined exactly. Based on our data, we estimate that its height was below 2 m. In consequence, the original Baalberge burial mound was less monumental as until now assumed, which potentially prompting a revision of its significance as indicator for social differentiation.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.