Multi-Method Structural Investigation of the Schneiderberg–Baalberge Burial Mound (Saxony-Anhalt, Germany) Including Seismic Full-Waveform Inversion (FWI)

IF 2.1 3区 地球科学 0 ARCHAEOLOGY
Manuel Zolchow, Daniel Köhn, Dennis Wilken, Ercan Erkul, Stefan Dreibrodt, Natalie Pickartz, Erica Corradini, Johannes Müller, Wolfgang Rabbel
{"title":"Multi-Method Structural Investigation of the Schneiderberg–Baalberge Burial Mound (Saxony-Anhalt, Germany) Including Seismic Full-Waveform Inversion (FWI)","authors":"Manuel Zolchow,&nbsp;Daniel Köhn,&nbsp;Dennis Wilken,&nbsp;Ercan Erkul,&nbsp;Stefan Dreibrodt,&nbsp;Natalie Pickartz,&nbsp;Erica Corradini,&nbsp;Johannes Müller,&nbsp;Wolfgang Rabbel","doi":"10.1002/arp.1961","DOIUrl":null,"url":null,"abstract":"<p>The construction history and subsequent usage of burial mounds are an important testimony for socio-economic transformation in prehistoric societies. The Baalberge–Schneiderberg burial mound, subject of the presented study, falls in this category as it is considered as an important monument that indicates the emergence of early social stratification during the Chalcolithic period in central Europe. This hypothesis relies on the chronological development of the burial mound, which is not fully understood until now. Therefore, a reconstruction of the complex stratigraphy of the burial mound including construction phases and later alterations is highly relevant for archaeological research, but the required excavations would be onerous and inconsistent with preservation efforts. In this paper, we demonstrate that non-invasive geophysical prospection, especially seismic sounding with shear and Love waves, is suitable to obtain the required stratigraphic information, if seismic full waveform inversion (FWI) and reflection imaging are applied. Complementary information on the preservation state of the mound is obtained through Electrical Resistivity Tomography (ERT) and Electromagnetic Induction (EMI) measurements. To support the seismic and geoelectric results, we utilize Dynamic Testing (DynP), geoarchaeological corings, <sup>14</sup>C-Dating and archaeological records. Our investigations reveal two construction phases of the Baalberge–Schneiderberg mound. The <sup>14</sup>C-Dating yields dates for the older burial mound that are contemporary to the Chalcolithic Baalberge group (4000–3400 <span>bc</span>). During the Early Bronze Age (EBA), the mound was enlarged to its final size by people of the Aunjetitz/Únětice society (2300–1600 <span>bc</span>). However, both seismic and geoelectric depth sections show an extensive disturbance of the original stratigraphy due to former excavations. For this reason, the exact shape of the older burial mound cannot be determined exactly. Based on our data, we estimate that its height was below 2 m. In consequence, the original Baalberge burial mound was less monumental as until now assumed, which potentially prompting a revision of its significance as indicator for social differentiation.</p>","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"32 1","pages":"209-234"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1961","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arp.1961","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The construction history and subsequent usage of burial mounds are an important testimony for socio-economic transformation in prehistoric societies. The Baalberge–Schneiderberg burial mound, subject of the presented study, falls in this category as it is considered as an important monument that indicates the emergence of early social stratification during the Chalcolithic period in central Europe. This hypothesis relies on the chronological development of the burial mound, which is not fully understood until now. Therefore, a reconstruction of the complex stratigraphy of the burial mound including construction phases and later alterations is highly relevant for archaeological research, but the required excavations would be onerous and inconsistent with preservation efforts. In this paper, we demonstrate that non-invasive geophysical prospection, especially seismic sounding with shear and Love waves, is suitable to obtain the required stratigraphic information, if seismic full waveform inversion (FWI) and reflection imaging are applied. Complementary information on the preservation state of the mound is obtained through Electrical Resistivity Tomography (ERT) and Electromagnetic Induction (EMI) measurements. To support the seismic and geoelectric results, we utilize Dynamic Testing (DynP), geoarchaeological corings, 14C-Dating and archaeological records. Our investigations reveal two construction phases of the Baalberge–Schneiderberg mound. The 14C-Dating yields dates for the older burial mound that are contemporary to the Chalcolithic Baalberge group (4000–3400 bc). During the Early Bronze Age (EBA), the mound was enlarged to its final size by people of the Aunjetitz/Únětice society (2300–1600 bc). However, both seismic and geoelectric depth sections show an extensive disturbance of the original stratigraphy due to former excavations. For this reason, the exact shape of the older burial mound cannot be determined exactly. Based on our data, we estimate that its height was below 2 m. In consequence, the original Baalberge burial mound was less monumental as until now assumed, which potentially prompting a revision of its significance as indicator for social differentiation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archaeological Prospection
Archaeological Prospection 地学-地球科学综合
CiteScore
3.90
自引率
11.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology. The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed. Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps. Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged. The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies. The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation. All papers will be subjected to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信