{"title":"Gut microbiota alteration was related to subclinical hypothyroidism and dyslipidemia in mice","authors":"Ru Wang, Xiaqing Yu, Haidong Cai, Ganghua Lu, Dingwei Gao, Mengyu Zhang, Li Chai, Wanwan Yi, Zhongwei Lv","doi":"10.1096/fj.202402289RR","DOIUrl":null,"url":null,"abstract":"<p>Gut microbiota has a close connection to different thyroid disorders, yet research on its links to subclinical hypothyroidism (SCH) remains limited and insufficient. In this study, we explored the potential relationship between the gut microbiota and SCH, as well as dyslipidemia in SCH mice. The SCH mouse model was induced using methimazole. The composition of the gut microbiota from mice was then analyzed through 16S rRNA gene sequencing technology. An antibiotic disruption experiment was used to assess how gut microbiota imbalance impacts thyroid function. The SCH mouse models were constructed and accompanied by significant dyslipidemia. The results revealed no significant differences in the <i>Firmicutes</i> to <i>Bacteroidota</i> ratio or α-diversity in gut microbiota from SCH and control mice, and in β-diversity, there was a noticeable but small difference between the groups. 14 differential genera between the two groups identified through LEfSe analysis were significantly correlated with serum lipid levels. Furthermore, the results of the antibiotic disruption experiment demonstrated that gut microbiota imbalance exacerbated the hypothyroidism in mice. The present results suggest that subclinical hypothyroidism has not yet caused significant changes in gut microbiota homeostasis, but gut microbiota plays an important role in regulating thyroid function and is closely associated with dyslipidemia in SCH. This study could help understand the relationship between gut microbiota and SCH, and offer new perspectives on dyslipidemia management in SCH.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202402289RR","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402289RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiota has a close connection to different thyroid disorders, yet research on its links to subclinical hypothyroidism (SCH) remains limited and insufficient. In this study, we explored the potential relationship between the gut microbiota and SCH, as well as dyslipidemia in SCH mice. The SCH mouse model was induced using methimazole. The composition of the gut microbiota from mice was then analyzed through 16S rRNA gene sequencing technology. An antibiotic disruption experiment was used to assess how gut microbiota imbalance impacts thyroid function. The SCH mouse models were constructed and accompanied by significant dyslipidemia. The results revealed no significant differences in the Firmicutes to Bacteroidota ratio or α-diversity in gut microbiota from SCH and control mice, and in β-diversity, there was a noticeable but small difference between the groups. 14 differential genera between the two groups identified through LEfSe analysis were significantly correlated with serum lipid levels. Furthermore, the results of the antibiotic disruption experiment demonstrated that gut microbiota imbalance exacerbated the hypothyroidism in mice. The present results suggest that subclinical hypothyroidism has not yet caused significant changes in gut microbiota homeostasis, but gut microbiota plays an important role in regulating thyroid function and is closely associated with dyslipidemia in SCH. This study could help understand the relationship between gut microbiota and SCH, and offer new perspectives on dyslipidemia management in SCH.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.