E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, N. A. Zhilyaeva, M. N. Efimov, A. A. Vasilev, I. A. Stenina, A. B. Yaroslavtsev
{"title":"Ethanol Steam Reforming Using Nanoporous Carbon Materials in Conventional and Membrane Reactors","authors":"E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, N. A. Zhilyaeva, M. N. Efimov, A. A. Vasilev, I. A. Stenina, A. B. Yaroslavtsev","doi":"10.1134/S2517751624600791","DOIUrl":null,"url":null,"abstract":"<p>The catalytic properties of samples containing Pd and Co metals on carbon supports (IR-pyrolyzed chitosan (CT) with an activated surface and detonation nanodiamonds (DNDs) have been studied in the ethanol steam reforming process. CT is a promising catalyst support due to its developed surface and the presence of nitrogen-containing groups capable of sorbing water molecules. The use of a membrane reactor with a Pd–Ru–In membrane has significantly increased the efficiency of the ethanol steam reforming process due to removing hydrogen from the reaction zone. The hydrogen yield in the membrane reactor increases twofold or more compared to a conventional reactor, while the proportion of reaction byproducts (CO and acetaldehyde) decreases. The highest hydrogen yield (15.8 mol/h per gram of catalyst) in the membrane reactor is achieved using a Pd–Co/CT<sub>KOH</sub> catalyst.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 5","pages":"371 - 381"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic properties of samples containing Pd and Co metals on carbon supports (IR-pyrolyzed chitosan (CT) with an activated surface and detonation nanodiamonds (DNDs) have been studied in the ethanol steam reforming process. CT is a promising catalyst support due to its developed surface and the presence of nitrogen-containing groups capable of sorbing water molecules. The use of a membrane reactor with a Pd–Ru–In membrane has significantly increased the efficiency of the ethanol steam reforming process due to removing hydrogen from the reaction zone. The hydrogen yield in the membrane reactor increases twofold or more compared to a conventional reactor, while the proportion of reaction byproducts (CO and acetaldehyde) decreases. The highest hydrogen yield (15.8 mol/h per gram of catalyst) in the membrane reactor is achieved using a Pd–Co/CTKOH catalyst.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.