Cinnamyl alcohol dehydrogenase downregulation in poplar wood increases saccharification after dilute acid pretreatment: a key role for lignin revealed by a multimodal investigation
IF 6.1 1区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Julien du Pasquier, Aya Zoghlami, Youri Naudin, Annabelle Déjardin, Gilles Pilate, Gabriel Paës, Patrick Perré
{"title":"Cinnamyl alcohol dehydrogenase downregulation in poplar wood increases saccharification after dilute acid pretreatment: a key role for lignin revealed by a multimodal investigation","authors":"Julien du Pasquier, Aya Zoghlami, Youri Naudin, Annabelle Déjardin, Gilles Pilate, Gabriel Paës, Patrick Perré","doi":"10.1186/s13068-025-02623-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study is the first to apply dilute acid pretreatment (DAP) under different severity conditions to poplar wood genetically modified for the <i>cinnamyl alcohol dehydrogenase</i> (<i>CAD1</i>) gene, which is involved in the lignin biosynthesis pathway. The carefully selected pretreatment conditions resulted in glucose yields that were 15 points higher for the <i>hpCAD</i> poplar line than for the wild-type (WT) wood after 48 h of enzymatic hydrolysis. To explain this higher saccharification rate, the chemical, spectral and structural changes in WT and <i>hpCAD</i> wood were analyzed in relation to the severity of the pretreatment process. Although few differences were found at the chemical level, variations in autofluorescence and cell deformation were more significant: at high severity, the cells of <i>hpCAD</i> wood observed by nanotomography were more easily deformed, but their middle lamella was more resistant than those of WT wood. All these differences are possibly explained by changes in the molecular structure of lignin in <i>hpCAD</i> wood, leading to the formation of more hydrophobic shorter monomer chains with fewer lignin‒carbohydrate interactions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02623-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02623-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study is the first to apply dilute acid pretreatment (DAP) under different severity conditions to poplar wood genetically modified for the cinnamyl alcohol dehydrogenase (CAD1) gene, which is involved in the lignin biosynthesis pathway. The carefully selected pretreatment conditions resulted in glucose yields that were 15 points higher for the hpCAD poplar line than for the wild-type (WT) wood after 48 h of enzymatic hydrolysis. To explain this higher saccharification rate, the chemical, spectral and structural changes in WT and hpCAD wood were analyzed in relation to the severity of the pretreatment process. Although few differences were found at the chemical level, variations in autofluorescence and cell deformation were more significant: at high severity, the cells of hpCAD wood observed by nanotomography were more easily deformed, but their middle lamella was more resistant than those of WT wood. All these differences are possibly explained by changes in the molecular structure of lignin in hpCAD wood, leading to the formation of more hydrophobic shorter monomer chains with fewer lignin‒carbohydrate interactions.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis