{"title":"Double Categories of Relations Relative to Factorisation Systems","authors":"Keisuke Hoshino, Hayato Nasu","doi":"10.1007/s10485-025-09799-y","DOIUrl":null,"url":null,"abstract":"<div><p>We relativise double categories of relations to stable orthogonal factorisation systems. Furthermore, we present the characterisation of the relative double categories of relations in two ways. The first utilises a generalised comprehension scheme, and the second focuses on a specific class of vertical arrows defined solely double-categorically. We organise diverse classes of double categories of relations and correlate them with significant classes of factorisation systems. Our framework embraces double categories of spans and double categories of relations on regular categories, which we meticulously compare to existing work on the characterisations of bicategories and double categories of spans and relations.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09799-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We relativise double categories of relations to stable orthogonal factorisation systems. Furthermore, we present the characterisation of the relative double categories of relations in two ways. The first utilises a generalised comprehension scheme, and the second focuses on a specific class of vertical arrows defined solely double-categorically. We organise diverse classes of double categories of relations and correlate them with significant classes of factorisation systems. Our framework embraces double categories of spans and double categories of relations on regular categories, which we meticulously compare to existing work on the characterisations of bicategories and double categories of spans and relations.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.