{"title":"Xanthan gum-Pectin Edible Coating Enriched with Sweet Orange (Citrus sinensis L.) Peel Essential Oil for Chicken Meat Preservation","authors":"Ganeswar Dalei, Subhraseema Das, Darshni Mohanty, Swagatika Biswal, Debasis Jena, Priyabrat Dehury, Bijnyan Ranjan Das","doi":"10.1007/s11483-025-09949-8","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to assess edible coatings composed of xanthan gum and pectin (PecXG) enriched with essential oils (EOs) of Sweet Orange (<i>Citrus sinensis</i> L.) peel towards preservation of chicken meat. The EOs was obtained by ultrasound-assisted hydrodistillation method. The compositional analysis of the EOs, performed by GC–MS, identified D-Limonene as the major constituent. Varied content of EO was incorporated into the PecXG films. The successful infusion of EO was observed from FTIR and XRD studies. The EO incorporation dose-dependently improved the thickness, tensile strength, porosity and hydrophobicity of the films. On the other hand, a lowering in water solubility, moisture content, oxygen and water vapor permeabilities were noted with increasing EO content in the films. A noticeable decline in L* and a* with enhanced b*, △E and opacity was witnessed upon increasing the EO content. The EO-infused films displayed a slightly lower degradation temperature with respect to pristine PecXG film. The film with highest EO (PecXG/ EO3) demonstrated significant UV-shielding properties. The inclusion of EO promoted the inhibitory activity of the films against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) free radicals. On the 10th day of chicken meat storage, the uncoated sample demonstrated a weight loss of 13.33% while it was 7.7% for PecXG/ EO3. Also, the uncoated meat exhibited a TVB-N value of 51.02 mg N/100 mg while it was 17.11 for PecXG/EO3. Furthermore, the coatings were biocompatible with L929 cells. The overall results of this study suggest that the developed EO-enriched PecXG edible coatings are potent in chicken meat preservation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09949-8","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to assess edible coatings composed of xanthan gum and pectin (PecXG) enriched with essential oils (EOs) of Sweet Orange (Citrus sinensis L.) peel towards preservation of chicken meat. The EOs was obtained by ultrasound-assisted hydrodistillation method. The compositional analysis of the EOs, performed by GC–MS, identified D-Limonene as the major constituent. Varied content of EO was incorporated into the PecXG films. The successful infusion of EO was observed from FTIR and XRD studies. The EO incorporation dose-dependently improved the thickness, tensile strength, porosity and hydrophobicity of the films. On the other hand, a lowering in water solubility, moisture content, oxygen and water vapor permeabilities were noted with increasing EO content in the films. A noticeable decline in L* and a* with enhanced b*, △E and opacity was witnessed upon increasing the EO content. The EO-infused films displayed a slightly lower degradation temperature with respect to pristine PecXG film. The film with highest EO (PecXG/ EO3) demonstrated significant UV-shielding properties. The inclusion of EO promoted the inhibitory activity of the films against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) free radicals. On the 10th day of chicken meat storage, the uncoated sample demonstrated a weight loss of 13.33% while it was 7.7% for PecXG/ EO3. Also, the uncoated meat exhibited a TVB-N value of 51.02 mg N/100 mg while it was 17.11 for PecXG/EO3. Furthermore, the coatings were biocompatible with L929 cells. The overall results of this study suggest that the developed EO-enriched PecXG edible coatings are potent in chicken meat preservation.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.