Rongwei Lu;Yutong Jiang;Yinan Mao;Chen Tang;Bin Chen;Laizhong Cui;Zhi Wang
{"title":"Data-Aware Gradient Compression for FL in Communication-Constrained Mobile Computing","authors":"Rongwei Lu;Yutong Jiang;Yinan Mao;Chen Tang;Bin Chen;Laizhong Cui;Zhi Wang","doi":"10.1109/TMC.2024.3504284","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) in mobile environments faces significant communication bottlenecks. Gradient compression has proven as an effective solution to this issue, offering substantial benefits in environments with limited bandwidth and metered data. Yet, it encounters severe performance drops in non-IID environments due to a one-size-fits-all compression approach, which does not account for the varying data volumes across workers. Assigning varying compression ratios to workers with distinct data distributions and volumes is therefore a promising solution. This work derives the convergence rate of distributed SGD with non-uniform compression, which reveals the intricate relationship between model convergence and the compression ratios applied to individual workers. Accordingly, we frame the relative compression ratio assignment as an <inline-formula><tex-math>$n$</tex-math></inline-formula>-variable chi-squared nonlinear optimization problem, constrained by a limited communication budget. We propose DAGC-R, which assigns conservative compression to workers handling larger data volumes. Recognizing the computational limitations of mobile devices, we propose the DAGC-A, which is computationally less demanding and enhances the robustness of compression in non-IID scenarios. Our experiments confirm that the DAGC-R and DAGC-A can speed up the training speed by up to 25.43% and 16.65% compared to the uniform compression respectively, when dealing with highly imbalanced data volume distribution and restricted communication.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"2755-2768"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759817/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) in mobile environments faces significant communication bottlenecks. Gradient compression has proven as an effective solution to this issue, offering substantial benefits in environments with limited bandwidth and metered data. Yet, it encounters severe performance drops in non-IID environments due to a one-size-fits-all compression approach, which does not account for the varying data volumes across workers. Assigning varying compression ratios to workers with distinct data distributions and volumes is therefore a promising solution. This work derives the convergence rate of distributed SGD with non-uniform compression, which reveals the intricate relationship between model convergence and the compression ratios applied to individual workers. Accordingly, we frame the relative compression ratio assignment as an $n$-variable chi-squared nonlinear optimization problem, constrained by a limited communication budget. We propose DAGC-R, which assigns conservative compression to workers handling larger data volumes. Recognizing the computational limitations of mobile devices, we propose the DAGC-A, which is computationally less demanding and enhances the robustness of compression in non-IID scenarios. Our experiments confirm that the DAGC-R and DAGC-A can speed up the training speed by up to 25.43% and 16.65% compared to the uniform compression respectively, when dealing with highly imbalanced data volume distribution and restricted communication.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.