Maria Tsampazi;Salvatore D'Oro;Michele Polese;Leonardo Bonati;Gwenael Poitau;Michael Healy;Mohammad Alavirad;Tommaso Melodia
{"title":"PandORA: Automated Design and Comprehensive Evaluation of Deep Reinforcement Learning Agents for Open RAN","authors":"Maria Tsampazi;Salvatore D'Oro;Michele Polese;Leonardo Bonati;Gwenael Poitau;Michael Healy;Mohammad Alavirad;Tommaso Melodia","doi":"10.1109/TMC.2024.3505781","DOIUrl":null,"url":null,"abstract":"The highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven intelligent control loops. Recent work has showed how Deep Reinforcement Learning (DRL) is effective in dynamically controlling O-RAN systems. However, how to design these solutions in a way that manages heterogeneous optimization goals and prevents unfair resource allocation is still an open challenge, with the logic within DRL agents often considered as a opaque system. In this paper, we introduce PandORA, a framework to automatically design and train DRL agents for Open RAN applications, package them as xApps and evaluate them in the Colosseum wireless network emulator. We benchmark 23 xApps that embed DRL agents trained using different architectures, reward design, action spaces, and decision-making timescales, and with the ability to hierarchically control different network parameters. We test these agents on the Colosseum testbed under diverse traffic and channel conditions, in static and mobile setups. Our experimental results indicate how suitable fine-tuning of the RAN control timers, as well as proper selection of reward designs and DRL architectures can boost network performance according to the network conditions and demand. Notably, finer decision-making granularities can improve Massive Machine-Type Communications (mMTC)’s performance by <inline-formula><tex-math>$\\sim\\! 56\\%$</tex-math></inline-formula> and even increase Enhanced Mobile Broadband (eMBB) Throughput by <inline-formula><tex-math>$\\sim\\! 99\\%$</tex-math></inline-formula>.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"3223-3240"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10766614/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven intelligent control loops. Recent work has showed how Deep Reinforcement Learning (DRL) is effective in dynamically controlling O-RAN systems. However, how to design these solutions in a way that manages heterogeneous optimization goals and prevents unfair resource allocation is still an open challenge, with the logic within DRL agents often considered as a opaque system. In this paper, we introduce PandORA, a framework to automatically design and train DRL agents for Open RAN applications, package them as xApps and evaluate them in the Colosseum wireless network emulator. We benchmark 23 xApps that embed DRL agents trained using different architectures, reward design, action spaces, and decision-making timescales, and with the ability to hierarchically control different network parameters. We test these agents on the Colosseum testbed under diverse traffic and channel conditions, in static and mobile setups. Our experimental results indicate how suitable fine-tuning of the RAN control timers, as well as proper selection of reward designs and DRL architectures can boost network performance according to the network conditions and demand. Notably, finer decision-making granularities can improve Massive Machine-Type Communications (mMTC)’s performance by $\sim\! 56\%$ and even increase Enhanced Mobile Broadband (eMBB) Throughput by $\sim\! 99\%$.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.