{"title":"To Optimize Human-in-the-Loop Learning in Repeated Routing Games","authors":"Hongbo Li;Lingjie Duan","doi":"10.1109/TMC.2024.3502076","DOIUrl":null,"url":null,"abstract":"Today navigation applications (e.g., Waze and Google Maps) enable human users to learn and share the latest traffic observations, yet such information sharing simply aids selfish users to predict and choose the shortest paths to jam each other. Prior routing game studies focus on myopic users in oversimplified one-shot scenarios to regulate selfish routing via information hiding or pricing mechanisms. For practical human-in-the-loop learning (HILL) in repeated routing games, we face non-myopic users of differential past observations and need new mechanisms (preferably non-monetary) to persuade users to adhere to the optimal path recommendations. We model the repeated routing game in a typical parallel transportation network, which generally contains one deterministic path and <inline-formula><tex-math>$N$</tex-math></inline-formula> stochastic paths. We first prove that no matter under the information sharing mechanism in use or the latest routing literature’s hiding mechanism, the resultant price of anarchy (PoA) for measuring the efficiency loss from social optimum can approach infinity, telling arbitrarily poor exploration-exploitation tradeoff over time. Then we propose a novel user-differential probabilistic recommendation (UPR) mechanism to differentiate and randomize path recommendations for users with differential learning histories. We prove that our UPR mechanism ensures interim individual rationality for all users and significantly reduces <inline-formula><tex-math>$\\text{PoA}=\\infty$</tex-math></inline-formula> to close-to-optimal <inline-formula><tex-math>$\\text{PoA}=1+\\frac{1}{4N+3}$</tex-math></inline-formula>, which cannot be further reduced by any other non-monetary mechanism. In addition to theoretical analysis, we conduct extensive experiments using real-world datasets to generalize our routing graphs and validate the close-to-optimal performance of UPR mechanism.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"2889-2899"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758237/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Today navigation applications (e.g., Waze and Google Maps) enable human users to learn and share the latest traffic observations, yet such information sharing simply aids selfish users to predict and choose the shortest paths to jam each other. Prior routing game studies focus on myopic users in oversimplified one-shot scenarios to regulate selfish routing via information hiding or pricing mechanisms. For practical human-in-the-loop learning (HILL) in repeated routing games, we face non-myopic users of differential past observations and need new mechanisms (preferably non-monetary) to persuade users to adhere to the optimal path recommendations. We model the repeated routing game in a typical parallel transportation network, which generally contains one deterministic path and $N$ stochastic paths. We first prove that no matter under the information sharing mechanism in use or the latest routing literature’s hiding mechanism, the resultant price of anarchy (PoA) for measuring the efficiency loss from social optimum can approach infinity, telling arbitrarily poor exploration-exploitation tradeoff over time. Then we propose a novel user-differential probabilistic recommendation (UPR) mechanism to differentiate and randomize path recommendations for users with differential learning histories. We prove that our UPR mechanism ensures interim individual rationality for all users and significantly reduces $\text{PoA}=\infty$ to close-to-optimal $\text{PoA}=1+\frac{1}{4N+3}$, which cannot be further reduced by any other non-monetary mechanism. In addition to theoretical analysis, we conduct extensive experiments using real-world datasets to generalize our routing graphs and validate the close-to-optimal performance of UPR mechanism.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.