An Intelligent Agent-Based Resilient Framework for Marine Vessel Mission Adaptations

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nikos Kougiatsos;Evelien L. Scheffers;Marcel C. van Benten;Dingena L. Schott;Peter de Vos;Rudy R. Negenborn;Vasso Reppa
{"title":"An Intelligent Agent-Based Resilient Framework for Marine Vessel Mission Adaptations","authors":"Nikos Kougiatsos;Evelien L. Scheffers;Marcel C. van Benten;Dingena L. Schott;Peter de Vos;Rudy R. Negenborn;Vasso Reppa","doi":"10.1109/OJITS.2025.3539419","DOIUrl":null,"url":null,"abstract":"Waterborne transport is very important for moving freight and passengers globally. To make this transport more efficient, vessel design must adapt to changing missions, regulations and the occurrence of malfunctions. This paper presents the design of an intelligent decision-support framework to assist marine engineers and vessel operators in updating the system and control architecture of marine vessels before and during a mission. The connection between the system architecture and control design perspectives is enabled using a semantics-based technique. To this end, the multi-level vessel control system is described by a semantic database, a knowledge graph used to connect the components automatically, and quantitative service criteria. Considering the system architecture, the optimal modification is deduced using modularity and complexity criteria, originating from the field of network theory. On the control side, an intelligent automation supervisor is designed to make offline and online decisions regarding the energy deficit to execute a new mission and the active automation configuration during operation. For offline decisions, system architecture modifications are requested by the vessel designers to cover the energy deficit. During operation, switching between hardware and virtual sensors as well as switching between energy management controllers is implemented to handle the effects of sensor faults. The framework is successfully applied to a case study of a tugboat used to adapt to missions with different power requirements, while simulation results are used to indicate its application in supporting the decisions of vessel designers and human vessel operators.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"184-203"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10876184/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Waterborne transport is very important for moving freight and passengers globally. To make this transport more efficient, vessel design must adapt to changing missions, regulations and the occurrence of malfunctions. This paper presents the design of an intelligent decision-support framework to assist marine engineers and vessel operators in updating the system and control architecture of marine vessels before and during a mission. The connection between the system architecture and control design perspectives is enabled using a semantics-based technique. To this end, the multi-level vessel control system is described by a semantic database, a knowledge graph used to connect the components automatically, and quantitative service criteria. Considering the system architecture, the optimal modification is deduced using modularity and complexity criteria, originating from the field of network theory. On the control side, an intelligent automation supervisor is designed to make offline and online decisions regarding the energy deficit to execute a new mission and the active automation configuration during operation. For offline decisions, system architecture modifications are requested by the vessel designers to cover the energy deficit. During operation, switching between hardware and virtual sensors as well as switching between energy management controllers is implemented to handle the effects of sensor faults. The framework is successfully applied to a case study of a tugboat used to adapt to missions with different power requirements, while simulation results are used to indicate its application in supporting the decisions of vessel designers and human vessel operators.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信