Wei Shu , Haowen Lin , Xintong Chen , Yi Yang , Zhicong Chen , Minyi Liu , Xintong You , Ying Li
{"title":"Solid transformation synthesis of zeolites and their applications","authors":"Wei Shu , Haowen Lin , Xintong Chen , Yi Yang , Zhicong Chen , Minyi Liu , Xintong You , Ying Li","doi":"10.1016/j.colsuc.2025.100063","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolites have been widely studied due to their excellent adsorption and catalytic properties. However, the single microporous structure of traditional zeolites limits their reaction activity and selectivity. Hierarchical zeolites effectively overcome these limitations and enhance the mass transfer and heat transfer, increasing their applicability and stability. Hierarchical zeolites are prepared by two typical strategies including \"bottom-up\" and \"top-down\" strategies. However, these strategies usually require high energy consumption, long preparation processes, and generate acidic and alkaline waste. Solid transformation synthesis offers an efficient and green route for hierarchical zeolite preparation. Hierarchical zeolites can enhance activity and/or selectivity in catalysis (e.g. MTO and MTG reactions) and adsorption (e.g. VOCs, methylene blue removal) compared to traditional microporous zeolites. This review aims to illustrate the state-of-art development of hierarchical zeolites synthesized by solid transformation methods, concerning their production and application. Hierarchical zeolite synthesized by solid transformation method has shown promising potential in many fields, such as environmental remediation, catalysis production, energy storage and so on. Therefore, it is of great significance to pave its way to the practical application, and their synthetic conditions and structural changes are worth further investigation.</div></div>","PeriodicalId":100290,"journal":{"name":"Colloids and Surfaces C: Environmental Aspects","volume":"3 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces C: Environmental Aspects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949759025000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolites have been widely studied due to their excellent adsorption and catalytic properties. However, the single microporous structure of traditional zeolites limits their reaction activity and selectivity. Hierarchical zeolites effectively overcome these limitations and enhance the mass transfer and heat transfer, increasing their applicability and stability. Hierarchical zeolites are prepared by two typical strategies including "bottom-up" and "top-down" strategies. However, these strategies usually require high energy consumption, long preparation processes, and generate acidic and alkaline waste. Solid transformation synthesis offers an efficient and green route for hierarchical zeolite preparation. Hierarchical zeolites can enhance activity and/or selectivity in catalysis (e.g. MTO and MTG reactions) and adsorption (e.g. VOCs, methylene blue removal) compared to traditional microporous zeolites. This review aims to illustrate the state-of-art development of hierarchical zeolites synthesized by solid transformation methods, concerning their production and application. Hierarchical zeolite synthesized by solid transformation method has shown promising potential in many fields, such as environmental remediation, catalysis production, energy storage and so on. Therefore, it is of great significance to pave its way to the practical application, and their synthetic conditions and structural changes are worth further investigation.