PIM-IoT: Enabling hierarchical, heterogeneous, and agile Processing-in-Memory in IoT systems

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Kan Zhong , Qiao Li , Ao Ren , Yujuan Tan , Xianzhang Chen , Linbo Long , Duo Liu
{"title":"PIM-IoT: Enabling hierarchical, heterogeneous, and agile Processing-in-Memory in IoT systems","authors":"Kan Zhong ,&nbsp;Qiao Li ,&nbsp;Ao Ren ,&nbsp;Yujuan Tan ,&nbsp;Xianzhang Chen ,&nbsp;Linbo Long ,&nbsp;Duo Liu","doi":"10.1016/j.future.2025.107782","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) is an emerging concept that senses the physical world by connecting various “things” and objects to the Internet. Conventional cloud-based IoT systems are unlikely to keep up with the diverse needs of IoT applications and have some issues, such as privacy and latency. Edge computing based IoT systems solve these issues by placing data processing and inference tasks near the data source. However, due to the increasing complexity of IoT applications, performing data processing and inference tasks in edge computing based IoT systems can lead to high energy consumption and latency.</div><div>Processing-in-Memory (PIM) is a promising solution to reduce the energy consumption of data processing and inference tasks by closely integrating computational logics with memory device. Therefore, in this paper, we propose <strong>PIM-IoT</strong>, a PIM architectures enabled IoT system to reduce the energy consumption. To accommodate various data processing tasks, we architect PIM-IoT as a hierarchical system that consists of 3 tiers: <em>sensing tier</em>, <em>gateway tier</em>, and <em>edge computing tier</em>. We first analyze the dataflow of typical IoT applications and map tasks to different tiers. To handle the data processing and inference tasks effectively in each tier, we then propose hierarchical, heterogeneous, and collaborative PIM architectures for each tier. Finally, we show how multi-tier can be co-optimized under latency and power constraints. To our knowledge, this is the first work to explore novel PIM architectures in IoT systems. Detailed analysis and experimental results show that PIM-IoT can achieve 5.6x performance improvement and 6x energy consumption reduction for IoT applications.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"169 ","pages":"Article 107782"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000779","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) is an emerging concept that senses the physical world by connecting various “things” and objects to the Internet. Conventional cloud-based IoT systems are unlikely to keep up with the diverse needs of IoT applications and have some issues, such as privacy and latency. Edge computing based IoT systems solve these issues by placing data processing and inference tasks near the data source. However, due to the increasing complexity of IoT applications, performing data processing and inference tasks in edge computing based IoT systems can lead to high energy consumption and latency.
Processing-in-Memory (PIM) is a promising solution to reduce the energy consumption of data processing and inference tasks by closely integrating computational logics with memory device. Therefore, in this paper, we propose PIM-IoT, a PIM architectures enabled IoT system to reduce the energy consumption. To accommodate various data processing tasks, we architect PIM-IoT as a hierarchical system that consists of 3 tiers: sensing tier, gateway tier, and edge computing tier. We first analyze the dataflow of typical IoT applications and map tasks to different tiers. To handle the data processing and inference tasks effectively in each tier, we then propose hierarchical, heterogeneous, and collaborative PIM architectures for each tier. Finally, we show how multi-tier can be co-optimized under latency and power constraints. To our knowledge, this is the first work to explore novel PIM architectures in IoT systems. Detailed analysis and experimental results show that PIM-IoT can achieve 5.6x performance improvement and 6x energy consumption reduction for IoT applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信