{"title":"Performing accelerated convergence in decentralized economic dispatch over dynamic directed networks","authors":"Yunshan Lv , Hailing Xiong , Fuqing Zhang , Shengying Dong","doi":"10.1016/j.jfranklin.2025.107611","DOIUrl":null,"url":null,"abstract":"<div><div>This article delves into the economic dispatch problem (EDP) within smart grids, specifically exploring it in time-varying directed networks. The objective is to allocate generation power efficiently among generators to fulfill load demands while minimizing the total generation cost, adhering to local capacity constraints. Each generator carries its unique local generation cost, and the total cost is calculated by summing these individual costs. To this aim, a novel algorithm (ADED-TVD) <u>A</u>ccelerated <u>D</u>ecentralized <u>E</u>conomic <u>D</u>ispatch Algorithm is introduced, which is suitable for <u>T</u>ime-<u>V</u>arying <u>D</u>irected networks well. ADED-TVD takes inspiration from the parameter momentum accelerated technique to improve the convergence with different parameters resulting in different momentum (Nesterov or heavy-ball) methods. In addition, ADED-TVD lies in time-varying directed communication networks, where theoretical evidence of linear convergence towards the optimal dispatch is offered. Also, explicit bounds for the step-size and momentum parameters are obtained. Finally, simulations that delve into various aspects of EDP in smart grids are presented.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 6","pages":"Article 107611"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322500105X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article delves into the economic dispatch problem (EDP) within smart grids, specifically exploring it in time-varying directed networks. The objective is to allocate generation power efficiently among generators to fulfill load demands while minimizing the total generation cost, adhering to local capacity constraints. Each generator carries its unique local generation cost, and the total cost is calculated by summing these individual costs. To this aim, a novel algorithm (ADED-TVD) Accelerated Decentralized Economic Dispatch Algorithm is introduced, which is suitable for Time-Varying Directed networks well. ADED-TVD takes inspiration from the parameter momentum accelerated technique to improve the convergence with different parameters resulting in different momentum (Nesterov or heavy-ball) methods. In addition, ADED-TVD lies in time-varying directed communication networks, where theoretical evidence of linear convergence towards the optimal dispatch is offered. Also, explicit bounds for the step-size and momentum parameters are obtained. Finally, simulations that delve into various aspects of EDP in smart grids are presented.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.