Physics-trained artificial intelligence framework to detect chloride induced degradation in concrete

Parth Patel , Abhinav Gupta , Saran Srikanth Bodda , Harleen Kaur Sandhu
{"title":"Physics-trained artificial intelligence framework to detect chloride induced degradation in concrete","authors":"Parth Patel ,&nbsp;Abhinav Gupta ,&nbsp;Saran Srikanth Bodda ,&nbsp;Harleen Kaur Sandhu","doi":"10.1016/j.iintel.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous critical infrastructures in the United States, including bridges, dams, and nuclear plants, are aging and prone to concrete degradation, compromising their performance and structural integrity. One of the leading causes of degradation is chloride-induced corrosion, where chloride ions diffuse into the concrete, leading to reinforcement corrosion, spalling, and cracking. Detecting chloride degradation at an early stage is crucial for ensuring the safety of these vital structures. However, the visible signs of degradation, such as spalling and cracking, often appear only after significant damage has occurred. Degradation occurs gradually over many years, making it impractical to collect real-time non-destructive testing (NDT) data over extended periods while allowing the structure to continue deteriorating. To overcome this challenge, an integrated structural health monitoring framework is proposed that combines advanced finite element modeling, sensor data, and deep learning techniques. This framework follows a multi-step approach to simulate chloride degradation over the service life of the structure. Subsequently, finite element analyses are performed to numerically simulate non-destructive testing at various stages of degradation to generate corresponding sensor data. By leveraging these simulated data and insights, a physics-driven artificial intelligence framework is developed. The proposed framework offers a state-of-the-art solution to mitigate the challenges associated with long-term degradation monitoring by utilizing high-fidelity simulations and data-driven techniques to achieve detection of chloride-induced concrete damage.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 2","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous critical infrastructures in the United States, including bridges, dams, and nuclear plants, are aging and prone to concrete degradation, compromising their performance and structural integrity. One of the leading causes of degradation is chloride-induced corrosion, where chloride ions diffuse into the concrete, leading to reinforcement corrosion, spalling, and cracking. Detecting chloride degradation at an early stage is crucial for ensuring the safety of these vital structures. However, the visible signs of degradation, such as spalling and cracking, often appear only after significant damage has occurred. Degradation occurs gradually over many years, making it impractical to collect real-time non-destructive testing (NDT) data over extended periods while allowing the structure to continue deteriorating. To overcome this challenge, an integrated structural health monitoring framework is proposed that combines advanced finite element modeling, sensor data, and deep learning techniques. This framework follows a multi-step approach to simulate chloride degradation over the service life of the structure. Subsequently, finite element analyses are performed to numerically simulate non-destructive testing at various stages of degradation to generate corresponding sensor data. By leveraging these simulated data and insights, a physics-driven artificial intelligence framework is developed. The proposed framework offers a state-of-the-art solution to mitigate the challenges associated with long-term degradation monitoring by utilizing high-fidelity simulations and data-driven techniques to achieve detection of chloride-induced concrete damage.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信