{"title":"Pushover-ML: A Machine Learning approach to predict a trilinear approximation of pushover curves for low-rise reinforced concrete frame buildings","authors":"Carlos Angarita , Carlos Montes , Orlando Arroyo","doi":"10.1016/j.softx.2025.102122","DOIUrl":null,"url":null,"abstract":"<div><div>The seismic design of low-rise RC building frames often relies on elastic procedures, limiting the evaluation of nonlinear behavior due to practical constraints such as computational cost. While the research community has applied Machine Learning (ML) to predict the seismic response, existing tools often require prior knowledge and expertise to manage dependencies, configure programming environments, and execute code in languages such as Python. This paper introduces Pushover-ML, a graphical user interface (GUI) designed to efficiently predict a trilinear approximation of pushover curves for low-rise RC frames using an ML-based approach. The user-friendly executable provides insights into the structure's seismic capacity through the yielding, maximum capacity, and collapse points of the pushover curve. Pushover-ML bridges the gap between advanced ML techniques and practical engineering applications, enabling accurate and efficient seismic response predictions.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"30 ","pages":"Article 102122"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025000895","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The seismic design of low-rise RC building frames often relies on elastic procedures, limiting the evaluation of nonlinear behavior due to practical constraints such as computational cost. While the research community has applied Machine Learning (ML) to predict the seismic response, existing tools often require prior knowledge and expertise to manage dependencies, configure programming environments, and execute code in languages such as Python. This paper introduces Pushover-ML, a graphical user interface (GUI) designed to efficiently predict a trilinear approximation of pushover curves for low-rise RC frames using an ML-based approach. The user-friendly executable provides insights into the structure's seismic capacity through the yielding, maximum capacity, and collapse points of the pushover curve. Pushover-ML bridges the gap between advanced ML techniques and practical engineering applications, enabling accurate and efficient seismic response predictions.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.