Runze Feng , Xin Han , Yubin Lan , Xinyue Gou , Jingzhi Zhang , Huizheng Wang , Shuo Zhao , Fanxia Kong
{"title":"Detection of Early Subtle Bruising in Strawberries Using VNIR Hyperspectral Imaging and Deep Learning","authors":"Runze Feng , Xin Han , Yubin Lan , Xinyue Gou , Jingzhi Zhang , Huizheng Wang , Shuo Zhao , Fanxia Kong","doi":"10.1016/j.vibspec.2025.103786","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting early surface bruising in strawberries during postharvest storage is crucial for maintaining product quality and reducing waste. In this paper, we combined visible-near infrared hyperspectral imaging (VNIR-HSI) technology with deep learning methods to efficiently detect early surface bruising in strawberries. Specifically, we created a hyperspectral image dataset of strawberries, captured in the 454–998 nm wavelength range at five intervals: 1, 12, 24, 36, and 48 hours after applying four levels of bruising: none, slight, moderate, and severe. To address the challenges of a limited sample size and redundant hyperspectral data, we employed data augmentation and two feature wavelength extraction techniques: Uninformative Variable Elimination (UVE) and Competitive Adaptive Reweighted Sampling (CARS). We then developed several classification models, including SVM, CNN, CNN-LSTM, and CNN-BiLSTM. Experimental results showed that the CNN-BiLSTM model, which used feature wavelengths selected by CARS, achieved a 97.8 % classification accuracy for detecting slight bruising 12 hours post-treatment, with an average bruised area of 24.09 ± 6.38 mm². This performance surpassed the SVM, CNN, and CNN-LSTM models by 14.7, 10.5, and 4.5 percentage points, respectively. This study effectively classified early bruising in strawberries and visualized bruised areas, demonstrating significant improvements in detection and classification of early bruising, particularly for smaller areas.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"138 ","pages":"Article 103786"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203125000207","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting early surface bruising in strawberries during postharvest storage is crucial for maintaining product quality and reducing waste. In this paper, we combined visible-near infrared hyperspectral imaging (VNIR-HSI) technology with deep learning methods to efficiently detect early surface bruising in strawberries. Specifically, we created a hyperspectral image dataset of strawberries, captured in the 454–998 nm wavelength range at five intervals: 1, 12, 24, 36, and 48 hours after applying four levels of bruising: none, slight, moderate, and severe. To address the challenges of a limited sample size and redundant hyperspectral data, we employed data augmentation and two feature wavelength extraction techniques: Uninformative Variable Elimination (UVE) and Competitive Adaptive Reweighted Sampling (CARS). We then developed several classification models, including SVM, CNN, CNN-LSTM, and CNN-BiLSTM. Experimental results showed that the CNN-BiLSTM model, which used feature wavelengths selected by CARS, achieved a 97.8 % classification accuracy for detecting slight bruising 12 hours post-treatment, with an average bruised area of 24.09 ± 6.38 mm². This performance surpassed the SVM, CNN, and CNN-LSTM models by 14.7, 10.5, and 4.5 percentage points, respectively. This study effectively classified early bruising in strawberries and visualized bruised areas, demonstrating significant improvements in detection and classification of early bruising, particularly for smaller areas.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.