Selection of manufacturing processes using graph neural networks

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Marco Hussong , Patrick Ruediger-Flore , Matthias Klar , Marius Kloft , Jan C. Aurich
{"title":"Selection of manufacturing processes using graph neural networks","authors":"Marco Hussong ,&nbsp;Patrick Ruediger-Flore ,&nbsp;Matthias Klar ,&nbsp;Marius Kloft ,&nbsp;Jan C. Aurich","doi":"10.1016/j.jmsy.2025.02.016","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing complexity of modern manufacturing, driven by trends such as product customization and shorter product life cycles, presents significant challenges in process planning. Traditional methods for selecting manufacturing processes in industry rely on expert knowledge and manual intervention, which can be time-consuming and error-prone. Systems that can automate the selection of manufacturing processes become increasingly important. Current approaches for the selection of manufacturing processes focus on deep learning that convert the 3D CAD models to intermediate representations such as voxels, point clouds or dexels. However, this transformation can result in the loss of topological, geometrical, or Product and Manufacturing Information (PMI). To address these challenges, this paper proposes a neural network architecture MaProNet. MaProNet is a graph attention neural network (GAT) designed to capture topological and geometrical information through the analysis of Attributed Adjacency Graphs (AAG) and Mesh structures. MaProNet also incorporates a wide range of PMI information.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 176-193"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000469","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing complexity of modern manufacturing, driven by trends such as product customization and shorter product life cycles, presents significant challenges in process planning. Traditional methods for selecting manufacturing processes in industry rely on expert knowledge and manual intervention, which can be time-consuming and error-prone. Systems that can automate the selection of manufacturing processes become increasingly important. Current approaches for the selection of manufacturing processes focus on deep learning that convert the 3D CAD models to intermediate representations such as voxels, point clouds or dexels. However, this transformation can result in the loss of topological, geometrical, or Product and Manufacturing Information (PMI). To address these challenges, this paper proposes a neural network architecture MaProNet. MaProNet is a graph attention neural network (GAT) designed to capture topological and geometrical information through the analysis of Attributed Adjacency Graphs (AAG) and Mesh structures. MaProNet also incorporates a wide range of PMI information.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信