A cheminformatics-based methodology to incorporate safety considerations during accelerated process development

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Subhadra Devi Saripalli , Rajagopalan Srinivasan
{"title":"A cheminformatics-based methodology to incorporate safety considerations during accelerated process development","authors":"Subhadra Devi Saripalli ,&nbsp;Rajagopalan Srinivasan","doi":"10.1016/j.compchemeng.2025.109066","DOIUrl":null,"url":null,"abstract":"<div><div>The fine chemical industry regularly develops novel products for diverse applications and produces them at scale in multi-purpose, batch processes. These processes often involve highly hazardous chemicals and reactive chemical hazards. If an unacceptable risk is identified after the production route has been finalized, it would necessitate expensive redesigns and result in suboptimal risk management strategies with significant delays in time to market. It is, therefore, desirable to consider inherent safety analysis during route selection. The traditional methods for inherent safety analysis are not directly applicable to the fine chemicals industry which have unique characteristics; specifically, they require information on a large number of properties of materials and reactions, which are not usually available for novel pathways, especially at the route selection stage. While safety data could be determined experimentally, this would be time-consuming and expensive, especially if the route were to be rejected later in the process development. In this paper, we propose a practicable methodology that addresses these important challenges unique to fine chemicals industry. Our methodology leverages chemoinformatic models, which are increasingly becoming available and reliable, to estimate material and reaction properties. Various chemoinformatic models are systematically integrated into the process development workflow so that fire, toxicity, and reactivity hazards can be estimated when necessary, thus enabling inherently safer route selection. The methodology is illustrated using an industrial case study of Boscalid manufacture. Fifty-three safety-critical properties are predicted using various chemoinformatics methods and enable the identification of safety issues at the early stages of the process lifecycle.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109066"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000705","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The fine chemical industry regularly develops novel products for diverse applications and produces them at scale in multi-purpose, batch processes. These processes often involve highly hazardous chemicals and reactive chemical hazards. If an unacceptable risk is identified after the production route has been finalized, it would necessitate expensive redesigns and result in suboptimal risk management strategies with significant delays in time to market. It is, therefore, desirable to consider inherent safety analysis during route selection. The traditional methods for inherent safety analysis are not directly applicable to the fine chemicals industry which have unique characteristics; specifically, they require information on a large number of properties of materials and reactions, which are not usually available for novel pathways, especially at the route selection stage. While safety data could be determined experimentally, this would be time-consuming and expensive, especially if the route were to be rejected later in the process development. In this paper, we propose a practicable methodology that addresses these important challenges unique to fine chemicals industry. Our methodology leverages chemoinformatic models, which are increasingly becoming available and reliable, to estimate material and reaction properties. Various chemoinformatic models are systematically integrated into the process development workflow so that fire, toxicity, and reactivity hazards can be estimated when necessary, thus enabling inherently safer route selection. The methodology is illustrated using an industrial case study of Boscalid manufacture. Fifty-three safety-critical properties are predicted using various chemoinformatics methods and enable the identification of safety issues at the early stages of the process lifecycle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信