Branch and bound for the fixed-shape unequal area facility layout problem

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fredrik Ekstedt , Raad Salman , Peter Damaschke
{"title":"Branch and bound for the fixed-shape unequal area facility layout problem","authors":"Fredrik Ekstedt ,&nbsp;Raad Salman ,&nbsp;Peter Damaschke","doi":"10.1016/j.cie.2025.110987","DOIUrl":null,"url":null,"abstract":"<div><div>Models of the Facility Layout Problem (FLP) can be useful for guiding the placement of resources in a factory building or similar. In real-world situations, the placement of the resources is often subject to a set of complex geometrical constraints, consisting of safety distances and work areas that cannot be encroached. This can result in disjoint regions or irregular shapes that must be placed so that a set of overlapping rules are fulfilled. In this paper, we formulate this problem as placing a fixed set of arbitrary polygon unions in a plane such that the overlapping constraints are not violated and the sum of weighted distances between them is minimized. A grid-based approximation and a branch and bound algorithm to solve this variation of the problem are developed. We compare the performance with a linearized QAP formulation solved with state-of-the art MILP solvers. The algorithm shows favorable results, solving problem instances with up to 8 resources to optimality within 48 h.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"203 ","pages":"Article 110987"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225001330","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Models of the Facility Layout Problem (FLP) can be useful for guiding the placement of resources in a factory building or similar. In real-world situations, the placement of the resources is often subject to a set of complex geometrical constraints, consisting of safety distances and work areas that cannot be encroached. This can result in disjoint regions or irregular shapes that must be placed so that a set of overlapping rules are fulfilled. In this paper, we formulate this problem as placing a fixed set of arbitrary polygon unions in a plane such that the overlapping constraints are not violated and the sum of weighted distances between them is minimized. A grid-based approximation and a branch and bound algorithm to solve this variation of the problem are developed. We compare the performance with a linearized QAP formulation solved with state-of-the art MILP solvers. The algorithm shows favorable results, solving problem instances with up to 8 resources to optimality within 48 h.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信