Zixuan Chen , Ming Lou , Han Yu , Bowen Zhang , Cheng Liu , Sizhe Niu , Yongbing Li
{"title":"Formation and mechanical performance of the pre-counter bore resistance rivet welded joints for thick cast aluminum and ultra-high strength steel","authors":"Zixuan Chen , Ming Lou , Han Yu , Bowen Zhang , Cheng Liu , Sizhe Niu , Yongbing Li","doi":"10.1016/j.jmapro.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Al/steel dissimilar joining represents a crucial strategy for vehicle body lightweighting. However, the increasing adoption of integrated die-casting with thick aluminum components in automotive manufacturing has introduced unprecedented challenges for Al/steel joining technologies. A novel approach to address thick cast Al to steel joining was developed through an innovative modification of resistance rivet welding (RRW). By incorporating a presetting counter bore prior to the traditional RRW process, high-performance flat surface joining between thick cast aluminum and press hardened steel (PHS) was successfully achieved, as demonstrated with 3.0 mm and 1.5 mm thickness specimens respectively. Through systematic investigation of process parameters, a comprehensive process window was established and detailed analyses of joint geometry characteristics were conducted. Microstructural characterization revealed that Al elements were uniformly distributed throughout the Al/steel mixed nugget. Under low heat input conditions, the nugget consisted of ferrite with an average grain size of 135.9 μm, while under high heat input conditions, it was composed of martensite with an average grain size of 3.9 μm. The joints exhibited mechanical performance, with a peak microhardness of 580 HV, tensile-shear strength of 10,691 N and cross-tension strength of 4057 N achieved. This study provides an effective solution for joining thick cast aluminum to steel and expanding the capabilities of dissimilar metal joining technology.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"141 ","pages":"Pages 431-444"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525002452","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Al/steel dissimilar joining represents a crucial strategy for vehicle body lightweighting. However, the increasing adoption of integrated die-casting with thick aluminum components in automotive manufacturing has introduced unprecedented challenges for Al/steel joining technologies. A novel approach to address thick cast Al to steel joining was developed through an innovative modification of resistance rivet welding (RRW). By incorporating a presetting counter bore prior to the traditional RRW process, high-performance flat surface joining between thick cast aluminum and press hardened steel (PHS) was successfully achieved, as demonstrated with 3.0 mm and 1.5 mm thickness specimens respectively. Through systematic investigation of process parameters, a comprehensive process window was established and detailed analyses of joint geometry characteristics were conducted. Microstructural characterization revealed that Al elements were uniformly distributed throughout the Al/steel mixed nugget. Under low heat input conditions, the nugget consisted of ferrite with an average grain size of 135.9 μm, while under high heat input conditions, it was composed of martensite with an average grain size of 3.9 μm. The joints exhibited mechanical performance, with a peak microhardness of 580 HV, tensile-shear strength of 10,691 N and cross-tension strength of 4057 N achieved. This study provides an effective solution for joining thick cast aluminum to steel and expanding the capabilities of dissimilar metal joining technology.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.