Preoperative ECG-assisted feature engineering enhances prediction of new-onset atrial fibrillation after cardiac surgery

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Biqi Tang , Kang He , Sen Liu , Zhong Wu , Cuiwei Yang
{"title":"Preoperative ECG-assisted feature engineering enhances prediction of new-onset atrial fibrillation after cardiac surgery","authors":"Biqi Tang ,&nbsp;Kang He ,&nbsp;Sen Liu ,&nbsp;Zhong Wu ,&nbsp;Cuiwei Yang","doi":"10.1016/j.cmpb.2025.108696","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>New-onset postoperative atrial fibrillation (POAF) is the most common complication following cardiac surgery, associated with adverse outcomes. However, the predictive accuracy of existing models remains unsatisfactory, primarily due to insufficient utilization of electrocardiogram (ECG) data and limitations in model development methodologies. This study aims to develop an accurate prediction model for POAF by comprehensively analyzing the predictive power of various preoperative ECG features.</div></div><div><h3>Methods</h3><div>This study enrolled 92 cardiac surgery patients with no prior history of atrial fibrillation (AF). One-minute ECG segments, extracted from preoperative long-term ECG recordings, were analyzed for P-wave and short-term heart rate variability (HRV) characteristics. A total of 39 HRV indices and 9 P-wave indices were calculated as ECG features. Additionally, clinical baseline characteristics were incorporated into a multi-modal risk assessment model. Using various feature combinations, six machine learning classifiers were applied to assess the predictive efficacy of various models. Finally, an ensemble strategy was implemented to enhance the model's prediction performance for POAF.</div></div><div><h3>Results</h3><div>Statistical analysis revealed significant differences (<em>p</em> &lt; 0.05) in 15 ECG features between patients with POAF and those without, including RR interval unpredictability and the cardiac sympathetic index. The predictive model based solely on clinical baseline characteristics demonstrated high accuracy (78.26 %), sensitivity (78.57 %), and specificity (78.13 %), with superior sensitivity in identifying patients at high risk for POAF compared to existing models. Furthermore, the multi-modal model, which integrated preoperative ECG features and an ensemble machine learning (EML) strategy, demonstrated a significant improvement in prediction performance, with an average accuracy of 81.52 %, sensitivity of 82.14 %, and specificity of 81.25 %.</div></div><div><h3>Conclusion</h3><div>The integration of P-wave and short-term HRV features holds promise for improving the prediction of new-onset POAF. ECG-assisted analysis is a valuable tool for elucidating the underlying mechanisms of POAF and advancing clinical strategies for its prevention and management.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"264 ","pages":"Article 108696"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001130","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

New-onset postoperative atrial fibrillation (POAF) is the most common complication following cardiac surgery, associated with adverse outcomes. However, the predictive accuracy of existing models remains unsatisfactory, primarily due to insufficient utilization of electrocardiogram (ECG) data and limitations in model development methodologies. This study aims to develop an accurate prediction model for POAF by comprehensively analyzing the predictive power of various preoperative ECG features.

Methods

This study enrolled 92 cardiac surgery patients with no prior history of atrial fibrillation (AF). One-minute ECG segments, extracted from preoperative long-term ECG recordings, were analyzed for P-wave and short-term heart rate variability (HRV) characteristics. A total of 39 HRV indices and 9 P-wave indices were calculated as ECG features. Additionally, clinical baseline characteristics were incorporated into a multi-modal risk assessment model. Using various feature combinations, six machine learning classifiers were applied to assess the predictive efficacy of various models. Finally, an ensemble strategy was implemented to enhance the model's prediction performance for POAF.

Results

Statistical analysis revealed significant differences (p < 0.05) in 15 ECG features between patients with POAF and those without, including RR interval unpredictability and the cardiac sympathetic index. The predictive model based solely on clinical baseline characteristics demonstrated high accuracy (78.26 %), sensitivity (78.57 %), and specificity (78.13 %), with superior sensitivity in identifying patients at high risk for POAF compared to existing models. Furthermore, the multi-modal model, which integrated preoperative ECG features and an ensemble machine learning (EML) strategy, demonstrated a significant improvement in prediction performance, with an average accuracy of 81.52 %, sensitivity of 82.14 %, and specificity of 81.25 %.

Conclusion

The integration of P-wave and short-term HRV features holds promise for improving the prediction of new-onset POAF. ECG-assisted analysis is a valuable tool for elucidating the underlying mechanisms of POAF and advancing clinical strategies for its prevention and management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信