{"title":"On primes in arithmetic progressions and bounded gaps between many primes","authors":"Julia Stadlmann","doi":"10.1016/j.aim.2025.110190","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that the primes below <em>x</em> are, on average, equidistributed in arithmetic progressions to smooth moduli of size up to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>/</mo><mn>40</mn><mo>−</mo><mi>ϵ</mi></mrow></msup></math></span>. The exponent of distribution <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>40</mn></mrow></mfrac></math></span> improves on a result of Polymath <span><span>[13]</span></span>, who had previously obtained the exponent <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>300</mn></mrow></mfrac></math></span>. As a consequence, we improve results on intervals of bounded length which contain many primes, showing that<span><span><span><math><mrow><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>exp</mi><mo></mo><mo>(</mo><mn>3.8075</mn><mi>m</mi><mo>)</mo><mo>)</mo><mo>.</mo></mrow></math></span></span></span> The main new ingredient of our proof is a modification of the <em>q</em>-van der Corput process. It allows us to exploit additional averaging for the exponential sums which appear in the Type I estimates of <span><span>[13]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"468 ","pages":"Article 110190"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500088X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the primes below x are, on average, equidistributed in arithmetic progressions to smooth moduli of size up to . The exponent of distribution improves on a result of Polymath [13], who had previously obtained the exponent . As a consequence, we improve results on intervals of bounded length which contain many primes, showing that The main new ingredient of our proof is a modification of the q-van der Corput process. It allows us to exploit additional averaging for the exponential sums which appear in the Type I estimates of [13].
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.