Study on the mechanism of Jieduquyuziyin prescription improving the condition of MRL/lpr mice by regulating T cell metabolic reprogramming through the AMPK/mTOR pathway

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Qingmiao Zhu , Yaxue Han , Xiaolong Li , Shuo Huang , Kai Zhao , Zhijun Xie , Yongsheng Fan , Ting Zhao
{"title":"Study on the mechanism of Jieduquyuziyin prescription improving the condition of MRL/lpr mice by regulating T cell metabolic reprogramming through the AMPK/mTOR pathway","authors":"Qingmiao Zhu ,&nbsp;Yaxue Han ,&nbsp;Xiaolong Li ,&nbsp;Shuo Huang ,&nbsp;Kai Zhao ,&nbsp;Zhijun Xie ,&nbsp;Yongsheng Fan ,&nbsp;Ting Zhao","doi":"10.1016/j.jep.2025.119584","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Systemic lupus erythematosus (SLE) is an autoimmune disease associated with T cell metabolic reprogramming. The traditional Chinese medicine Jieduquyuziyin prescription (JP) has demonstrated therapeutic efficacy in SLE, yet its mechanisms remain unclear. This study evaluates the therapeutic effects of JP on SLE, focusing on T cell metabolic reprogramming.</div></div><div><h3>Aim of the study</h3><div>To assess JP's therapeutic effects on SLE and its role in regulating T cell metabolism.</div></div><div><h3>Materials and methods</h3><div>MRL/lpr mice were treated with JP and assessed for spleen index, serum biochemistry, autoantibodies, urine protein levels, and histopathology. Th17 and Treg proportions were analyzed via flow cytometry. CD4<sup>+</sup>T cells were evaluated for the Th17/Treg transcription factors and glucose metabolism indicators through ELISA, quantitative real-time PCR, and assay kits. The AMPK/mTOR pathway was investigated using Compound C in vivo and in vitro.</div></div><div><h3>Results</h3><div>JP alleviated SLE symptoms, promoted Treg differentiation, and inhibited Th17 differentiation, restoring immune balance. JP reduced glycolysis-related metabolites and enzymes in CD4<sup>+</sup>T cells, including glucose, pyruvate, lactate, Glucose transporters1 (Glut1), Hexokinase2 (HK2), Pyruvate kinase isozyme typeM2 (PKM2), lactic dehydrogenase A (LDHA). JP decreased RORC expression, a key transcription factor for Th17 cells, and increased Foxp3 expression, a key regulator of Treg cells. JP activated AMPK and inhibited mTOR signaling in both mouse and Jurkat cell models.</div></div><div><h3>Conclusions</h3><div>JP alleviates SLE symptoms by modulating T cell metabolic reprogramming, primarily through inhibiting glycolysis and restoring the Th17/Treg balance via the AMPK/mTOR pathway. These findings underscore the significance of targeting metabolic pathways in the treatment of autoimmune diseases.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"345 ","pages":"Article 119584"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125002685","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with T cell metabolic reprogramming. The traditional Chinese medicine Jieduquyuziyin prescription (JP) has demonstrated therapeutic efficacy in SLE, yet its mechanisms remain unclear. This study evaluates the therapeutic effects of JP on SLE, focusing on T cell metabolic reprogramming.

Aim of the study

To assess JP's therapeutic effects on SLE and its role in regulating T cell metabolism.

Materials and methods

MRL/lpr mice were treated with JP and assessed for spleen index, serum biochemistry, autoantibodies, urine protein levels, and histopathology. Th17 and Treg proportions were analyzed via flow cytometry. CD4+T cells were evaluated for the Th17/Treg transcription factors and glucose metabolism indicators through ELISA, quantitative real-time PCR, and assay kits. The AMPK/mTOR pathway was investigated using Compound C in vivo and in vitro.

Results

JP alleviated SLE symptoms, promoted Treg differentiation, and inhibited Th17 differentiation, restoring immune balance. JP reduced glycolysis-related metabolites and enzymes in CD4+T cells, including glucose, pyruvate, lactate, Glucose transporters1 (Glut1), Hexokinase2 (HK2), Pyruvate kinase isozyme typeM2 (PKM2), lactic dehydrogenase A (LDHA). JP decreased RORC expression, a key transcription factor for Th17 cells, and increased Foxp3 expression, a key regulator of Treg cells. JP activated AMPK and inhibited mTOR signaling in both mouse and Jurkat cell models.

Conclusions

JP alleviates SLE symptoms by modulating T cell metabolic reprogramming, primarily through inhibiting glycolysis and restoring the Th17/Treg balance via the AMPK/mTOR pathway. These findings underscore the significance of targeting metabolic pathways in the treatment of autoimmune diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信