Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs

IF 7 2区 医学 Q1 BIOLOGY
Behrang Khaffafi , Hadi Khoshakhalgh , Mohammad Keyhanazar , Ehsan Mostafapour
{"title":"Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs","authors":"Behrang Khaffafi ,&nbsp;Hadi Khoshakhalgh ,&nbsp;Mohammad Keyhanazar ,&nbsp;Ehsan Mostafapour","doi":"10.1016/j.compbiomed.2025.109938","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Computer-aided detection (CAD) systems have been widely used to assist medical professionals in interpreting medical images, aiding in the detection of potential diseases. Despite their usefulness, CAD systems cannot yet fully replace doctors in diagnosing many conditions due to limitations in current algorithms. Cerebral microbleeds (CMBs) are a critical area of concern for neurological health, and accurate detection of CMBs is essential for understanding their impact on brain function. This study aims to improve CMB detection by enhancing existing machine learning algorithms.</div></div><div><h3>Methods</h3><div>This paper presents four CNN-based algorithms designed to enhance CMB detection. The detection methods are categorized into traditional machine learning approaches and deep learning-based methods. The traditional methods, while computationally efficient, offer lower sensitivity, while CNN-based approaches promise greater accuracy. The algorithms proposed in this study include a multi-channel CNN with optimized architecture and a multiscale CNN structure, both of which were designed to reduce false positives and improve overall performance.</div></div><div><h3>Results</h3><div>The first CNN algorithm, with an optimized multi-channel architecture, demonstrated a sensitivity of 99.6 %, specificity of 99.3 %, and accuracy of 99.5 %. The fourth algorithm, based on a stable multiscale CNN structure, achieved sensitivity of 98.2 %, specificity of 97.4 %, and accuracy of 97.8 %. Both algorithms exhibited a significant reduction in false positives compared to traditional methods. The experiments conducted confirm the effectiveness of these algorithms in improving the precision and reliability of CMB detection.</div></div><div><h3>Conclusion</h3><div>The proposed CNN-based algorithms demonstrate a significant advancement in the automated detection of CMBs, with notable improvements in sensitivity, specificity, and accuracy. These results underscore the potential of deep learning models, particularly CNNs, in enhancing CAD systems for neurological disease detection and reducing diagnostic errors. Further research and optimization may allow these algorithms to be integrated into clinical practices, providing more reliable support for healthcare professionals.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109938"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002896","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Computer-aided detection (CAD) systems have been widely used to assist medical professionals in interpreting medical images, aiding in the detection of potential diseases. Despite their usefulness, CAD systems cannot yet fully replace doctors in diagnosing many conditions due to limitations in current algorithms. Cerebral microbleeds (CMBs) are a critical area of concern for neurological health, and accurate detection of CMBs is essential for understanding their impact on brain function. This study aims to improve CMB detection by enhancing existing machine learning algorithms.

Methods

This paper presents four CNN-based algorithms designed to enhance CMB detection. The detection methods are categorized into traditional machine learning approaches and deep learning-based methods. The traditional methods, while computationally efficient, offer lower sensitivity, while CNN-based approaches promise greater accuracy. The algorithms proposed in this study include a multi-channel CNN with optimized architecture and a multiscale CNN structure, both of which were designed to reduce false positives and improve overall performance.

Results

The first CNN algorithm, with an optimized multi-channel architecture, demonstrated a sensitivity of 99.6 %, specificity of 99.3 %, and accuracy of 99.5 %. The fourth algorithm, based on a stable multiscale CNN structure, achieved sensitivity of 98.2 %, specificity of 97.4 %, and accuracy of 97.8 %. Both algorithms exhibited a significant reduction in false positives compared to traditional methods. The experiments conducted confirm the effectiveness of these algorithms in improving the precision and reliability of CMB detection.

Conclusion

The proposed CNN-based algorithms demonstrate a significant advancement in the automated detection of CMBs, with notable improvements in sensitivity, specificity, and accuracy. These results underscore the potential of deep learning models, particularly CNNs, in enhancing CAD systems for neurological disease detection and reducing diagnostic errors. Further research and optimization may allow these algorithms to be integrated into clinical practices, providing more reliable support for healthcare professionals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信