{"title":"Optical absorption and refractive index change of neutral donors in InAs/GaAs camel-like nanostructures: 3D finite element analysis","authors":"R.A. López-Doria , N. Hernández , M.R. Fulla","doi":"10.1016/j.physe.2025.116222","DOIUrl":null,"url":null,"abstract":"<div><div>Spectral and optical properties of neutral donors confined in experimentally grown InAs/GaAs camel-like nanostructures were investigated using the spatial finite element method within the effective mass approximation. The total absorption and refractive index changes were determined by using the compact matrix density formalism. The energy spectrum was found to strongly depend on the donor’s position, with transition energies between the first three low-lying levels below 20 meV (THz band) and further tuneable by applying a static electric field along the “humps”. On-center donor, on-hump donor, and nearly single-electron systems were found to be optically active even at zero electric field. Their optical properties can also be enhanced at specific electric field strengths, a phenomenon linked to the formation of significant dipole moment values and confirmed through volumetric probability density analyses. Additionally, all the systems exhibited a periodic absorption profile with the polarization angle, resembling a “nanoscopic polarizer”.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116222"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000475","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral and optical properties of neutral donors confined in experimentally grown InAs/GaAs camel-like nanostructures were investigated using the spatial finite element method within the effective mass approximation. The total absorption and refractive index changes were determined by using the compact matrix density formalism. The energy spectrum was found to strongly depend on the donor’s position, with transition energies between the first three low-lying levels below 20 meV (THz band) and further tuneable by applying a static electric field along the “humps”. On-center donor, on-hump donor, and nearly single-electron systems were found to be optically active even at zero electric field. Their optical properties can also be enhanced at specific electric field strengths, a phenomenon linked to the formation of significant dipole moment values and confirmed through volumetric probability density analyses. Additionally, all the systems exhibited a periodic absorption profile with the polarization angle, resembling a “nanoscopic polarizer”.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures