Uncertainty estimation in female pelvic synthetic computed tomography generated from iterative reconstructed cone-beam computed tomography

IF 3.4 Q2 ONCOLOGY
Yvonne J.M. de Hond, Paul M.A. van Haaren, Rob H.N. Tijssen, Coen W. Hurkmans
{"title":"Uncertainty estimation in female pelvic synthetic computed tomography generated from iterative reconstructed cone-beam computed tomography","authors":"Yvonne J.M. de Hond,&nbsp;Paul M.A. van Haaren,&nbsp;Rob H.N. Tijssen,&nbsp;Coen W. Hurkmans","doi":"10.1016/j.phro.2025.100743","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Iterative reconstruction (IR) can be used to improve cone-beam computed tomography (CBCT) image quality and from such iterative reconstructed (iCBCT) images, synthetic CT (sCT) images can be generated to enable accurate dose calculations. The aim of this study was to evaluate the uncertainty in generating sCT from iCBCT using vendor-supplied software for online adaptive radiotherapy.</div></div><div><h3>Materials and Methods</h3><div>Projection data from 20 female pelvic CBCTs were used to reconstruct iCBCT images. The process was repeated with 128 different IR parameter combinations. From these iCBCTs, sCTs were generated. Voxel value variation in the 128 iCBCT and 128 sCT images per patient was quantified by the standard deviation (STD). Additional sub-analysis was performed per parameter category.</div></div><div><h3>Results</h3><div>Generated sCTs had significantly higher maximum STD-values, median of 438 HU, compared to input iCBCT, median of 198 HU, indicating limited robustness to parameter changes. The highest STD-values of sCTs were within bone and soft-tissue compared to air. Variations in sCT numbers were parameter dependent. Scatter correction produced the highest variance in sCTs (median: 358 HU) despite no visible changes in iCBCTs, whereas total variation regularization resulted in the lowest variance in sCTs (median: 233 HU) despite increased iCBCT blurriness.</div></div><div><h3>Conclusions</h3><div>Variations in iCBCT reconstruction parameters affected the CT number representation in the sCT. The sCT variance depended on the parameter category, with subtle iCBCT changes leading to significant density alterations in sCT. Therefore, it is recommended to evaluate both iCBCT and sCT generation, especially when updating software or settings.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100743"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240563162500048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

Iterative reconstruction (IR) can be used to improve cone-beam computed tomography (CBCT) image quality and from such iterative reconstructed (iCBCT) images, synthetic CT (sCT) images can be generated to enable accurate dose calculations. The aim of this study was to evaluate the uncertainty in generating sCT from iCBCT using vendor-supplied software for online adaptive radiotherapy.

Materials and Methods

Projection data from 20 female pelvic CBCTs were used to reconstruct iCBCT images. The process was repeated with 128 different IR parameter combinations. From these iCBCTs, sCTs were generated. Voxel value variation in the 128 iCBCT and 128 sCT images per patient was quantified by the standard deviation (STD). Additional sub-analysis was performed per parameter category.

Results

Generated sCTs had significantly higher maximum STD-values, median of 438 HU, compared to input iCBCT, median of 198 HU, indicating limited robustness to parameter changes. The highest STD-values of sCTs were within bone and soft-tissue compared to air. Variations in sCT numbers were parameter dependent. Scatter correction produced the highest variance in sCTs (median: 358 HU) despite no visible changes in iCBCTs, whereas total variation regularization resulted in the lowest variance in sCTs (median: 233 HU) despite increased iCBCT blurriness.

Conclusions

Variations in iCBCT reconstruction parameters affected the CT number representation in the sCT. The sCT variance depended on the parameter category, with subtle iCBCT changes leading to significant density alterations in sCT. Therefore, it is recommended to evaluate both iCBCT and sCT generation, especially when updating software or settings.
由迭代重建锥束计算机断层生成的女性骨盆合成计算机断层的不确定性估计
背景与目的迭代重建(IR)可用于提高锥形束计算机断层扫描(CBCT)图像质量,并可从这种迭代重建(iCBCT)图像生成合成CT (sCT)图像,从而实现精确的剂量计算。本研究的目的是评估使用供应商提供的在线适应性放疗软件从iCBCT生成sCT的不确定性。材料与方法利用20例女性盆腔cbct的投影数据重建iCBCT图像。用128种不同的红外参数组合重复该过程。从这些icbct中生成sct。每位患者128张iCBCT和128张sCT图像的体素值变化通过标准偏差(STD)量化。对每个参数类别进行额外的子分析。结果生成的sct的最大std值中位数为438 HU,显著高于输入的iCBCT,中位数为198 HU,表明对参数变化的鲁棒性有限。与空气相比,sct在骨骼和软组织中的std值最高。sCT数量的变化与参数有关。尽管iCBCT没有明显的变化,但散点校正在sct中产生了最高的方差(中位数:358 HU),而尽管iCBCT模糊度增加,但总变异正则化导致sct的方差最低(中位数:233 HU)。结论iCBCT重建参数的变化影响CT在sCT中的表现。sCT方差取决于参数类别,iCBCT的细微变化导致sCT密度的显著变化。因此,建议同时评估iCBCT和sCT的生成,特别是在更新软件或设置时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信