{"title":"Flow past a porous plate of a new class of fluids with limiting stress: Analytical results and linear stability analysis","authors":"Lorenzo Fusi , Kumbakonam R. Rajagopal","doi":"10.1016/j.euromechflu.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>We study the linearized stability of the flow of a non-Newtonian fluid that is capable of describing the response of a large class of fluids that seemingly mimic the response of viscoplastic materials like paints, food products, solutions, etc. The flow takes place over a porous solid plate subject to suction at the plate. Not surprisingly, we find that suction decreases the boundary layer thickness and stabilizes the flow, and outside the boundary layer, the velocity is nearly the same as the free-stream velocity. The critical Reynold’s number and marginal stability curves that demarcate the region within which perturbations are stable to linearized disturbances versus those that are unstable, as function of the Reynold’s number, are determined. We find that the flows of the fluid under consideration are more stable than the corresponding flows for the Navier–Stokes fluid.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"112 ","pages":"Pages 58-64"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000305","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the linearized stability of the flow of a non-Newtonian fluid that is capable of describing the response of a large class of fluids that seemingly mimic the response of viscoplastic materials like paints, food products, solutions, etc. The flow takes place over a porous solid plate subject to suction at the plate. Not surprisingly, we find that suction decreases the boundary layer thickness and stabilizes the flow, and outside the boundary layer, the velocity is nearly the same as the free-stream velocity. The critical Reynold’s number and marginal stability curves that demarcate the region within which perturbations are stable to linearized disturbances versus those that are unstable, as function of the Reynold’s number, are determined. We find that the flows of the fluid under consideration are more stable than the corresponding flows for the Navier–Stokes fluid.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.