Recommendation System to Predict the d-band Center of Core-Shell Bimetallic Nanoparticles Catalysts

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Sakshi Agarwal, Abhishek Singh
{"title":"Recommendation System to Predict the d-band Center of Core-Shell Bimetallic Nanoparticles Catalysts","authors":"Sakshi Agarwal, Abhishek Singh","doi":"10.1002/adts.202401460","DOIUrl":null,"url":null,"abstract":"Core-shell nanoparticles are an important class of catalytic materials due to the presence of unsaturated bonds, phase-separated metals, and synergistic effect of more than one elements. Exploring the electronic properties such as the <span data-altimg=\"/cms/asset/548018d6-ebdb-49f2-91b9-54403bf4eea5/adts202401460-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0001\" display=\"inline\" location=\"graphic/adts202401460-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\">d</mi>$d$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-band center (<span data-altimg=\"/cms/asset/41308ca7-6370-4d48-a2c3-350c54aedfd4/adts202401460-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0002\" display=\"inline\" location=\"graphic/adts202401460-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msub>$\\epsilon _d$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) and the related catalytic properties of these materials are quite challenging due to resource consuming experiments and computationally expensive modeling of the nanoparticles. Therefore, a density functional theory (DFT) coupled recommendation system based approach is developed to predict the <span data-altimg=\"/cms/asset/d98bd168-a9d8-43c2-8e73-2fcbac867b87/adts202401460-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0003.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0003\" display=\"inline\" location=\"graphic/adts202401460-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msub>$\\epsilon _d$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the core-shell nanoparticles. Here, the recommendation system involves completion of a core-shell interaction matrix, where each matrix element represents the <span data-altimg=\"/cms/asset/f73c24f2-f300-4a43-b15e-afb8295a10ad/adts202401460-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0004.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0004\" display=\"inline\" location=\"graphic/adts202401460-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msub>$\\epsilon _d$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of a unique core-shell pair. Matrix completion by predicting the interaction matrix elements is carried out using neural network. The neural network generated a low dimensional representations for each core and shell metals, which are learned iteratively to predict corresponding <span data-altimg=\"/cms/asset/90262b50-92a0-44be-9c77-6aa5cb7d7e2b/adts202401460-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0005.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0005\" display=\"inline\" location=\"graphic/adts202401460-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msub>$\\epsilon _d$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the pair. The learned representations brilliantly captures the similarities and dissimilarities between metals present in shell or core. A very low train/test RMSE of 0.009/0.009 is obtained with elemental features based model. The same model is further employed to predict the <span data-altimg=\"/cms/asset/bfc44cb6-dca7-4a83-bc9a-5be3d2ee7d09/adts202401460-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0006.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0006\" display=\"inline\" location=\"graphic/adts202401460-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\">d</mi>$d$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-band width (<span data-altimg=\"/cms/asset/b8b11064-2bb6-43a2-a58a-d4a923247a34/adts202401460-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0007.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript w\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0007\" display=\"inline\" location=\"graphic/adts202401460-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript w\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">w</mi></msub>$\\epsilon _w$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), suggesting its transferability. This approach recommends the optimum range of <span data-altimg=\"/cms/asset/79b5fa2f-f884-4c2a-9fe8-d7678b191873/adts202401460-math-0008.png\"></span><mjx-container ctxtmenu_counter=\"16\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0008.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0008\" display=\"inline\" location=\"graphic/adts202401460-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript d\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></msub>$\\epsilon _d$</annotation></semantics></math></mjx-assistive-mml></mjx-container>/ <span data-altimg=\"/cms/asset/7c74d73a-d2d6-42df-9e2d-233dd8dc0f3c/adts202401460-math-0009.png\"></span><mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401460-math-0009.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript w\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401460:adts202401460-math-0009\" display=\"inline\" location=\"graphic/adts202401460-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"epsilon Subscript w\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">w</mi></msub>$\\epsilon _w$</annotation></semantics></math></mjx-assistive-mml></mjx-container> along with the combination of core-shell metals having most efficient adsorption of species for any reaction. The results presented in this study can help experimentally design the core-shell nanoparticles having a desired catalytic activity.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401460","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Core-shell nanoparticles are an important class of catalytic materials due to the presence of unsaturated bonds, phase-separated metals, and synergistic effect of more than one elements. Exploring the electronic properties such as the d$d$-band center (εd$\epsilon _d$) and the related catalytic properties of these materials are quite challenging due to resource consuming experiments and computationally expensive modeling of the nanoparticles. Therefore, a density functional theory (DFT) coupled recommendation system based approach is developed to predict the εd$\epsilon _d$ of the core-shell nanoparticles. Here, the recommendation system involves completion of a core-shell interaction matrix, where each matrix element represents the εd$\epsilon _d$ of a unique core-shell pair. Matrix completion by predicting the interaction matrix elements is carried out using neural network. The neural network generated a low dimensional representations for each core and shell metals, which are learned iteratively to predict corresponding εd$\epsilon _d$ of the pair. The learned representations brilliantly captures the similarities and dissimilarities between metals present in shell or core. A very low train/test RMSE of 0.009/0.009 is obtained with elemental features based model. The same model is further employed to predict the d$d$-band width (εw$\epsilon _w$), suggesting its transferability. This approach recommends the optimum range of εd$\epsilon _d$/ εw$\epsilon _w$ along with the combination of core-shell metals having most efficient adsorption of species for any reaction. The results presented in this study can help experimentally design the core-shell nanoparticles having a desired catalytic activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信