Direct Imaging of Chirality Transfer Induced by Glycosidic Bond Stereochemistry in Carbohydrate Self-Assemblies

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuning Cai, Joakim S. Jestilä, Peter Liljeroth, Adam S. Foster
{"title":"Direct Imaging of Chirality Transfer Induced by Glycosidic Bond Stereochemistry in Carbohydrate Self-Assemblies","authors":"Shuning Cai, Joakim S. Jestilä, Peter Liljeroth, Adam S. Foster","doi":"10.1021/jacs.4c16088","DOIUrl":null,"url":null,"abstract":"Carbohydrates, essential biological building blocks, exhibit functional mechanisms tied to their intricate stereochemistry. Subtle stereochemical differences, such as those between the anomers maltose and cellobiose, lead to distinct properties due to their differing glycosidic bonds; the former is digestible by humans, while the latter is not. This underscores the importance of precise structural determination of individual carbohydrate molecules for deeper functional insights. However, their structural complexity and conformational flexibility, combined with the high spatial resolution needed, have hindered direct imaging of carbohydrate stereochemistry. Here, we employ noncontact atomic force microscopy integrated with a data-efficient, multifidelity structure search approach accelerated by machine learning integration to determine the precise 3D atomic coordinates of two carbohydrate anomers on Au(111). We observe that the stereochemistry of the glycosidic bond regulates on-surface chiral selection in carbohydrate self-assemblies. The reconstructed models, validated against experimental data, provide reliable atomic-scale structural evidence, uncovering the origin of the on-surface chirality from carbohydrate anomerism. Our study confirms that nc-AFM is a reliable technique for real-space discrimination of carbohydrate stereochemistry at the single-molecule level, providing a pathway for bottom-up investigations into the structure–property relationships of carbohydrates in biological research and materials science.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"36 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16088","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbohydrates, essential biological building blocks, exhibit functional mechanisms tied to their intricate stereochemistry. Subtle stereochemical differences, such as those between the anomers maltose and cellobiose, lead to distinct properties due to their differing glycosidic bonds; the former is digestible by humans, while the latter is not. This underscores the importance of precise structural determination of individual carbohydrate molecules for deeper functional insights. However, their structural complexity and conformational flexibility, combined with the high spatial resolution needed, have hindered direct imaging of carbohydrate stereochemistry. Here, we employ noncontact atomic force microscopy integrated with a data-efficient, multifidelity structure search approach accelerated by machine learning integration to determine the precise 3D atomic coordinates of two carbohydrate anomers on Au(111). We observe that the stereochemistry of the glycosidic bond regulates on-surface chiral selection in carbohydrate self-assemblies. The reconstructed models, validated against experimental data, provide reliable atomic-scale structural evidence, uncovering the origin of the on-surface chirality from carbohydrate anomerism. Our study confirms that nc-AFM is a reliable technique for real-space discrimination of carbohydrate stereochemistry at the single-molecule level, providing a pathway for bottom-up investigations into the structure–property relationships of carbohydrates in biological research and materials science.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信