77Se Solid-State NMR Investigation of Selenium Chemical Shift Tensors of Chalcogen Bonds in Selenadiazole Cocrystals

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Tristan Georges, Jacynthe Beaudoin, Mubassira Rahman, Alireza Nari, Jeffrey S. Ovens, David L. Bryce
{"title":"77Se Solid-State NMR Investigation of Selenium Chemical Shift Tensors of Chalcogen Bonds in Selenadiazole Cocrystals","authors":"Tristan Georges, Jacynthe Beaudoin, Mubassira Rahman, Alireza Nari, Jeffrey S. Ovens, David L. Bryce","doi":"10.1021/acs.jpcc.4c07712","DOIUrl":null,"url":null,"abstract":"This study focuses on 3,4-dicyano-1,2,5-selenadiazole and substituted 2,1,3-benzoselenadiazole-based cocrystals synthesized via mechanochemical methods and characterized by a combination of X-ray diffraction and solid-state NMR spectroscopy. Eight new single-crystal structures are reported, revealing a variety of chalcogen bond (ChB) geometries and binding motifs that are found to promote low-dimensional molecular architectures. We find that <sup>77</sup>Se isotropic chemical shifts follow exponential decay or growth trends along with the ChB length, while also depending on the electrostatic contribution of the ChB donor. These trends are shown to be governed by changes to the intermediate selenium chemical shift tensor component, δ<sub>22</sub>. Such behavior is further exploited to estimate ChB lengths in compounds unsuitable for single-crystal structure determination. This methodology highlights the utility of solid-state NMR as a powerful alternative for probing ChB interactions, particularly in systems where traditional crystallographic techniques are not applicable. The results offer critical physical insights into the origins of the selenium chemical shift tensors of ChB-based materials.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"47 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07712","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on 3,4-dicyano-1,2,5-selenadiazole and substituted 2,1,3-benzoselenadiazole-based cocrystals synthesized via mechanochemical methods and characterized by a combination of X-ray diffraction and solid-state NMR spectroscopy. Eight new single-crystal structures are reported, revealing a variety of chalcogen bond (ChB) geometries and binding motifs that are found to promote low-dimensional molecular architectures. We find that 77Se isotropic chemical shifts follow exponential decay or growth trends along with the ChB length, while also depending on the electrostatic contribution of the ChB donor. These trends are shown to be governed by changes to the intermediate selenium chemical shift tensor component, δ22. Such behavior is further exploited to estimate ChB lengths in compounds unsuitable for single-crystal structure determination. This methodology highlights the utility of solid-state NMR as a powerful alternative for probing ChB interactions, particularly in systems where traditional crystallographic techniques are not applicable. The results offer critical physical insights into the origins of the selenium chemical shift tensors of ChB-based materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信