{"title":"Spatial-Temporal Information Fusion for Thyroid Nodule Segmentation in Dynamic Contrast-Enhanced MRI: A Novel Approach.","authors":"Binze Han, Qian Yang, Xuetong Tao, Meini Wu, Long Yang, Wenming Deng, Wei Cui, Dehong Luo, Qian Wan, Zhou Liu, Na Zhang","doi":"10.1007/s10278-025-01463-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a novel segmentation method that utilizes spatio-temporal information for segmenting two-dimensional thyroid nodules on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Leveraging medical morphology knowledge of the thyroid gland, we designed a semi-supervised segmentation model that first segments the thyroid gland, guiding the model to focus exclusively on the thyroid region. This approach reduces the complexity of nodule segmentation by filtering out irrelevant regions and artifacts. Then, we introduced a method to explicitly extract temporal information from DCE-MRI data and integrated this with spatial information. The fusion of spatial and temporal features enhances the model's robustness and accuracy, particularly in complex imaging scenarios. Experimental results demonstrate that the proposed method significantly improves segmentation performance across multiple state-of-the-art models. The Dice similarity coefficient (DSC) increased by 8.41%, 7.05%, 9.39%, 11.53%, 20.94%, 17.94%, and 15.65% for U-Net, U-Net + + , SegNet, TransUnet, Swin-Unet, SSTrans-Net, and VM-Unet, respectively, and significantly improved the segmentation accuracy of nodules of different sizes. These results highlight the effectiveness of our spatial-temporal approach in achieving accurate and reliable thyroid nodule segmentation, offering a promising framework for clinical applications and future research in medical image analysis.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01463-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a novel segmentation method that utilizes spatio-temporal information for segmenting two-dimensional thyroid nodules on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Leveraging medical morphology knowledge of the thyroid gland, we designed a semi-supervised segmentation model that first segments the thyroid gland, guiding the model to focus exclusively on the thyroid region. This approach reduces the complexity of nodule segmentation by filtering out irrelevant regions and artifacts. Then, we introduced a method to explicitly extract temporal information from DCE-MRI data and integrated this with spatial information. The fusion of spatial and temporal features enhances the model's robustness and accuracy, particularly in complex imaging scenarios. Experimental results demonstrate that the proposed method significantly improves segmentation performance across multiple state-of-the-art models. The Dice similarity coefficient (DSC) increased by 8.41%, 7.05%, 9.39%, 11.53%, 20.94%, 17.94%, and 15.65% for U-Net, U-Net + + , SegNet, TransUnet, Swin-Unet, SSTrans-Net, and VM-Unet, respectively, and significantly improved the segmentation accuracy of nodules of different sizes. These results highlight the effectiveness of our spatial-temporal approach in achieving accurate and reliable thyroid nodule segmentation, offering a promising framework for clinical applications and future research in medical image analysis.