Absence of immunoreaction and cellular adhesion in a polyvinylpyrrolidone-coated ventricular catheter with choroid plexus obstruction: A case report.

Surgical neurology international Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.25259/SNI_970_2024
Bianca Romero, Gio Jison, Scott Self, Seunghyun Lee, Sora Sato, Celine Thao-Quyen Tran, Leandro Castaneyra-Ruiz, Michael Muhonen
{"title":"Absence of immunoreaction and cellular adhesion in a polyvinylpyrrolidone-coated ventricular catheter with choroid plexus obstruction: A case report.","authors":"Bianca Romero, Gio Jison, Scott Self, Seunghyun Lee, Sora Sato, Celine Thao-Quyen Tran, Leandro Castaneyra-Ruiz, Michael Muhonen","doi":"10.25259/SNI_970_2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While a variety of modalities are available for the treatment of hydrocephalus, ventriculoperitoneal shunting (VPS) remains the most utilized treatment. Although efficacious, VPS is susceptible to malfunction, with catheter obstruction as the primary cause of failure in pediatric patients. Prior studies have speculated that implanted catheters trigger an immune response from the central nervous system, resulting in cellular reactivity and subsequent obstruction of the device. These cells are derived from the choroid plexus (ChP), which plays an active role in immunological surveillance. Its cellular components contain some of the putative cells that contribute to ventricular catheter occlusion.</p><p><strong>Case description: </strong>The case illustrated herein is a patient with a functionally obstructed polyvinylpyrrolidone (PVP)-coated catheter, with ChP occluding the catheter fenestrations. While silicone catheter obstruction typically presents with fibrosis and microglial reaction, the illustrated case demonstrates the absence of an immunological response. PVP-coated catheters appear to deter cellular attachment which may dampen the immune response to the catheter in the brain. However, the case discussed postulates that ChP can still obstruct PVP-coated catheters through growth and expansion into the catheter holes and lumen, even without an immune response.</p><p><strong>Conclusion: </strong>This case report highlights the complexity of novel catheter designs constructed from nonimmunogenic materials while considering catheter hole configuration and size to deter ChP growth into the catheter holes and the lumen to prevent cellular catheter occlusion.</p>","PeriodicalId":94217,"journal":{"name":"Surgical neurology international","volume":"16 ","pages":"65"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical neurology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/SNI_970_2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: While a variety of modalities are available for the treatment of hydrocephalus, ventriculoperitoneal shunting (VPS) remains the most utilized treatment. Although efficacious, VPS is susceptible to malfunction, with catheter obstruction as the primary cause of failure in pediatric patients. Prior studies have speculated that implanted catheters trigger an immune response from the central nervous system, resulting in cellular reactivity and subsequent obstruction of the device. These cells are derived from the choroid plexus (ChP), which plays an active role in immunological surveillance. Its cellular components contain some of the putative cells that contribute to ventricular catheter occlusion.

Case description: The case illustrated herein is a patient with a functionally obstructed polyvinylpyrrolidone (PVP)-coated catheter, with ChP occluding the catheter fenestrations. While silicone catheter obstruction typically presents with fibrosis and microglial reaction, the illustrated case demonstrates the absence of an immunological response. PVP-coated catheters appear to deter cellular attachment which may dampen the immune response to the catheter in the brain. However, the case discussed postulates that ChP can still obstruct PVP-coated catheters through growth and expansion into the catheter holes and lumen, even without an immune response.

Conclusion: This case report highlights the complexity of novel catheter designs constructed from nonimmunogenic materials while considering catheter hole configuration and size to deter ChP growth into the catheter holes and the lumen to prevent cellular catheter occlusion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信