LigExtract: Large-scale Automated Identification of Ligands from Protein Structures in the Protein Data Bank.

Natália Aniceto, Nuno Martinho, Ismael Rufino, Rita C Guedes
{"title":"LigExtract: Large-scale Automated Identification of Ligands from Protein Structures in the Protein Data Bank.","authors":"Natália Aniceto, Nuno Martinho, Ismael Rufino, Rita C Guedes","doi":"10.1093/gpbjnl/qzaf018","DOIUrl":null,"url":null,"abstract":"<p><p>The Protein Data Bank is an ever-growing database of 3D macromolecular structures that has become a crucial resource for the drug discovery process. Exploring complexed proteins and accessing the ligands in these proteins is paramount to help researchers understand biological processes and design new compounds of pharmaceutical interest. However, currently available tools to perform large-scale ligand identification do not address many of the more complex ways in which ligands are stored and represented in PDB structures. Therefore, a new tool called LigExtract was specifically developed for the large-scale processing of PDB structures and the identification of their ligands. This is a fully open-source tool available to the scientific community, designed to provide end-to-end processing whereby the user simply provides a list of UniProt IDs and LigExtract returns a list of ligands, their individual PDB files, a PDB file of the protein chains engaged with the ligand and a series of log files that inform the user of the decisions made during the ligand extraction process as well as potential flagging of additional scenarios that might have to be considered during any follow-up use of the processed files (e.g., ligands covalently bound to the protein). LigExtract is available, open-source, on GitHub (https://github.com/comp-medchem/LigExtract).</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Protein Data Bank is an ever-growing database of 3D macromolecular structures that has become a crucial resource for the drug discovery process. Exploring complexed proteins and accessing the ligands in these proteins is paramount to help researchers understand biological processes and design new compounds of pharmaceutical interest. However, currently available tools to perform large-scale ligand identification do not address many of the more complex ways in which ligands are stored and represented in PDB structures. Therefore, a new tool called LigExtract was specifically developed for the large-scale processing of PDB structures and the identification of their ligands. This is a fully open-source tool available to the scientific community, designed to provide end-to-end processing whereby the user simply provides a list of UniProt IDs and LigExtract returns a list of ligands, their individual PDB files, a PDB file of the protein chains engaged with the ligand and a series of log files that inform the user of the decisions made during the ligand extraction process as well as potential flagging of additional scenarios that might have to be considered during any follow-up use of the processed files (e.g., ligands covalently bound to the protein). LigExtract is available, open-source, on GitHub (https://github.com/comp-medchem/LigExtract).

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信