Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis.

Junwei Liu, Xiaoping Cen, Chenxin Yi, Feng-Ao Wang, Junxiang Ding, Jinyu Cheng, Qinhua Wu, Baowen Gai, Yiwen Zhou, Ruikun He, Feng Gao, Yixue Li
{"title":"Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis.","authors":"Junwei Liu, Xiaoping Cen, Chenxin Yi, Feng-Ao Wang, Junxiang Ding, Jinyu Cheng, Qinhua Wu, Baowen Gai, Yiwen Zhou, Ruikun He, Feng Gao, Yixue Li","doi":"10.1093/gpbjnl/qzaf011","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of biological and medical examination methods has vastly expanded personal biomedical information, including molecular, cellular, image, and electronic health record datasets. Integrating this wealth of information enables precise disease diagnosis, biomarker identification, and treatment design in clinical settings. Artificial intelligence (AI) techniques, particularly deep learning models, have been extensively employed in biomedical applications, demonstrating increased precision, efficiency, and generalization. The success of the large language and vision models further significantly extends their biomedical applications. However, challenges remain in learning these multimodal biomedical datasets, such as data privacy, fusion, and model interpretation. In this review, we provided a comprehensive overview of various biomedical data modalities, multi-modal representation learning methods, and the applications of AI in biomedical data integrative analysis. Additionally, we discussed the challenges in applying these deep learning methods and how to better integrate them into biomedical scenarios. We then proposed future directions for adapting deep learning methods with model pre-training and knowledge integration to advance biomedical research and benefit their clinical applications.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of biological and medical examination methods has vastly expanded personal biomedical information, including molecular, cellular, image, and electronic health record datasets. Integrating this wealth of information enables precise disease diagnosis, biomarker identification, and treatment design in clinical settings. Artificial intelligence (AI) techniques, particularly deep learning models, have been extensively employed in biomedical applications, demonstrating increased precision, efficiency, and generalization. The success of the large language and vision models further significantly extends their biomedical applications. However, challenges remain in learning these multimodal biomedical datasets, such as data privacy, fusion, and model interpretation. In this review, we provided a comprehensive overview of various biomedical data modalities, multi-modal representation learning methods, and the applications of AI in biomedical data integrative analysis. Additionally, we discussed the challenges in applying these deep learning methods and how to better integrate them into biomedical scenarios. We then proposed future directions for adapting deep learning methods with model pre-training and knowledge integration to advance biomedical research and benefit their clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信