Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis.

Junwei Liu, Xiaoping Cen, Chenxin Yi, Feng-Ao Wang, Junxiang Ding, Jinyu Cheng, Qinhua Wu, Baowen Gai, Yiwen Zhou, Ruikun He, Feng Gao, Yixue Li
{"title":"Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis.","authors":"Junwei Liu, Xiaoping Cen, Chenxin Yi, Feng-Ao Wang, Junxiang Ding, Jinyu Cheng, Qinhua Wu, Baowen Gai, Yiwen Zhou, Ruikun He, Feng Gao, Yixue Li","doi":"10.1093/gpbjnl/qzaf011","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of biological and medical examination methods has vastly expanded personal biomedical information, including molecular, cellular, image, and electronic health record datasets. Integrating this wealth of information enables precise disease diagnosis, biomarker identification, and treatment design in clinical settings. Artificial intelligence (AI) techniques, particularly deep learning models, have been extensively employed in biomedical applications, demonstrating increased precision, efficiency, and generalization. The success of the large language and vision models further significantly extends their biomedical applications. However, challenges remain in learning these multimodal biomedical datasets, such as data privacy, fusion, and model interpretation. In this review, we provided a comprehensive overview of various biomedical data modalities, multi-modal representation learning methods, and the applications of AI in biomedical data integrative analysis. Additionally, we discussed the challenges in applying these deep learning methods and how to better integrate them into biomedical scenarios. We then proposed future directions for adapting deep learning methods with model pre-training and knowledge integration to advance biomedical research and benefit their clinical applications.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of biological and medical examination methods has vastly expanded personal biomedical information, including molecular, cellular, image, and electronic health record datasets. Integrating this wealth of information enables precise disease diagnosis, biomarker identification, and treatment design in clinical settings. Artificial intelligence (AI) techniques, particularly deep learning models, have been extensively employed in biomedical applications, demonstrating increased precision, efficiency, and generalization. The success of the large language and vision models further significantly extends their biomedical applications. However, challenges remain in learning these multimodal biomedical datasets, such as data privacy, fusion, and model interpretation. In this review, we provided a comprehensive overview of various biomedical data modalities, multi-modal representation learning methods, and the applications of AI in biomedical data integrative analysis. Additionally, we discussed the challenges in applying these deep learning methods and how to better integrate them into biomedical scenarios. We then proposed future directions for adapting deep learning methods with model pre-training and knowledge integration to advance biomedical research and benefit their clinical applications.

人工智能驱动的生物医学多模态数据融合与分析中的挑战。
生物和医学检查方法的快速发展极大地扩展了个人生物医学信息,包括分子、细胞、图像和电子健康记录数据集。整合这些丰富的信息可以在临床环境中进行精确的疾病诊断、生物标志物鉴定和治疗设计。人工智能(AI)技术,特别是深度学习模型,已广泛应用于生物医学应用,显示出更高的精度、效率和通用性。大型语言和视觉模型的成功进一步显著扩展了它们的生物医学应用。然而,在学习这些多模态生物医学数据集方面仍然存在挑战,例如数据隐私、融合和模型解释。在这篇综述中,我们全面概述了各种生物医学数据模式、多模态表示学习方法以及人工智能在生物医学数据集成分析中的应用。此外,我们还讨论了应用这些深度学习方法所面临的挑战,以及如何更好地将它们集成到生物医学场景中。然后,我们提出了将深度学习方法与模型预训练和知识集成相结合,以促进生物医学研究和临床应用的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信