Vedran Pašara, Tommaso Sattin, Carlo De Asmundis, Gian-Battista Chierchia, Gezim Bala
{"title":"Pulsed field ablation for atrial fibrillation.","authors":"Vedran Pašara, Tommaso Sattin, Carlo De Asmundis, Gian-Battista Chierchia, Gezim Bala","doi":"10.1080/17434440.2025.2475239","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Atrial fibrillation is the most common sustained arrhythmia, associated with substantial morbidity and a reduced quality of life. The current standard of care, transcatheter pulmonary vein isolation using thermal ablation techniques, provides symptom relief but carries a risk of collateral tissue damage. In recent years, pulsed field ablation, a nonthermal technique based on irreversible electroporation, has emerged as a promising alternative to conventional thermal ablation methods.</p><p><strong>Areas covered: </strong>This review provides an overview of pulsed field ablation, a novel nonthermal ablation technique. We briefly explain its biophysical principles and general technical aspects, describe currently available technologies, and summarize findings from clinical studies. Additionally, we discuss its safety profile, unresolved issues, and limitations, while also exploring future perspectives.</p><p><strong>Expert opinion: </strong>Pulsed field ablation offers distinct advantages over traditional thermal ablation methods, such as shorter procedure times and a favorable safety profile due to precise tissue targeting. Future improvements in ablation device design, energy delivery settings, integration with mapping systems, workflow efficiency, ablation protocols, and patient selection criteria are expected to further enhance clinical outcomes.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":" ","pages":"311-320"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2025.2475239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Atrial fibrillation is the most common sustained arrhythmia, associated with substantial morbidity and a reduced quality of life. The current standard of care, transcatheter pulmonary vein isolation using thermal ablation techniques, provides symptom relief but carries a risk of collateral tissue damage. In recent years, pulsed field ablation, a nonthermal technique based on irreversible electroporation, has emerged as a promising alternative to conventional thermal ablation methods.
Areas covered: This review provides an overview of pulsed field ablation, a novel nonthermal ablation technique. We briefly explain its biophysical principles and general technical aspects, describe currently available technologies, and summarize findings from clinical studies. Additionally, we discuss its safety profile, unresolved issues, and limitations, while also exploring future perspectives.
Expert opinion: Pulsed field ablation offers distinct advantages over traditional thermal ablation methods, such as shorter procedure times and a favorable safety profile due to precise tissue targeting. Future improvements in ablation device design, energy delivery settings, integration with mapping systems, workflow efficiency, ablation protocols, and patient selection criteria are expected to further enhance clinical outcomes.