Evaluating agar-plating and dilution-to-extinction isolation methods for generating oak-associated microbial culture collections.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf019
Alejandra Ordonez, Usman Hussain, Marine C Cambon, Peter N Golyshin, Jim Downie, James E McDonald
{"title":"Evaluating agar-plating and dilution-to-extinction isolation methods for generating oak-associated microbial culture collections.","authors":"Alejandra Ordonez, Usman Hussain, Marine C Cambon, Peter N Golyshin, Jim Downie, James E McDonald","doi":"10.1093/ismeco/ycaf019","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial isolation methods are crucial for producing comprehensive microbial culture collections that reflect the richness and diversity of natural microbiotas. Few studies have focused on isolation of plant-associated microbiota, with even less focus on forest trees. Here, we tested two isolation methods, (i) agar plating and (ii) dilution-to-extinction, for isolation of microbiota from leaf, stem, and root/rhizosphere tissues of oak trees. Microbial isolates obtained (culture-dependent) and the endogenous oak microbiota of the source tissue samples (culture-independent) were characterized by 16S rRNA gene and ITS community profiling. We found that the type of growth medium, incubation conditions, and sample type inoculated onto agar influenced the number of isolates and taxonomic richness of the isolates obtained. Most bacterial and fungal ASVs obtained from isolation-based approaches were only obtained using one of the two isolation methods, with only 12% of the ASVs detected in both. Moreover, the isolation methods captured microorganisms not detected by culture-independent analysis of the microbiota, suggesting these approaches can complement culture-independent analysis by enriching low-abundant taxa. Our results suggest that dilution-to-extinction and agar-plating approaches captured distinct fractions of the oak microbiota, and that a combination of both isolation methods was required to produce taxonomically richer microbial culture collections.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf019"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial isolation methods are crucial for producing comprehensive microbial culture collections that reflect the richness and diversity of natural microbiotas. Few studies have focused on isolation of plant-associated microbiota, with even less focus on forest trees. Here, we tested two isolation methods, (i) agar plating and (ii) dilution-to-extinction, for isolation of microbiota from leaf, stem, and root/rhizosphere tissues of oak trees. Microbial isolates obtained (culture-dependent) and the endogenous oak microbiota of the source tissue samples (culture-independent) were characterized by 16S rRNA gene and ITS community profiling. We found that the type of growth medium, incubation conditions, and sample type inoculated onto agar influenced the number of isolates and taxonomic richness of the isolates obtained. Most bacterial and fungal ASVs obtained from isolation-based approaches were only obtained using one of the two isolation methods, with only 12% of the ASVs detected in both. Moreover, the isolation methods captured microorganisms not detected by culture-independent analysis of the microbiota, suggesting these approaches can complement culture-independent analysis by enriching low-abundant taxa. Our results suggest that dilution-to-extinction and agar-plating approaches captured distinct fractions of the oak microbiota, and that a combination of both isolation methods was required to produce taxonomically richer microbial culture collections.

评价琼脂电镀和稀释至消光分离方法产生橡树相关微生物培养集合。
微生物分离方法是生产全面的微生物培养集合,反映自然微生物群的丰富性和多样性的关键。很少有研究关注与植物相关的微生物群的分离,对森林树木的关注就更少了。在这里,我们测试了两种分离方法,(i)琼脂电镀和(ii)稀释至消失,从橡树的叶子、茎和根/根际组织分离微生物群。利用16S rRNA基因和ITS群落谱对分离得到的微生物(培养依赖型)和源组织样品的内源橡木微生物群(培养依赖型)进行了表征。我们发现培养基类型、培养条件和接种琼脂的样品类型影响分离株的数量和分离株的分类丰富度。大多数基于分离方法获得的细菌和真菌asv仅使用两种分离方法中的一种获得,两种分离方法中仅检测到12%的asv。此外,分离方法捕获了微生物群独立培养分析未检测到的微生物,表明这些方法可以通过富集低丰度分类群来补充独立培养分析。我们的研究结果表明,稀释灭绝法和琼脂镀法捕获了橡树微生物群的不同部分,并且需要两种分离方法的结合来产生更丰富的微生物培养集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信